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1. Introduction  

The Training Data for Machine Learning to Enhance PCOR Data Infrastructure project (hereafter the 

Project) led by the Office of the National Coordinator for Health Information Technology (ONC) conducted 

foundational work to support future applications of artificial intelligence (AI), specifically focused on machine 

learning (ML) to further health, health care, and patient-centered outcomes research (PCOR), and in turn 

enhance the adoption and implementation of a PCOR data infrastructure i. PCOR is “designed to produce 

scientific evidence to inform and support health care decisions of patients, families, and providers. PCOR 

focuses on studying the effectiveness of prevention and treatment options with consideration of the 

preferences, values, and questions patients face when making health care choices”ii. This Project is funded 

through the PCOR Trust Fund (PCORTF) iii, created under the Patient Protection and Affordable Care Act 

of 2010, and managed by the Department of Health and Human Services (HHS) Assistant Secretary for 

Planning and Evaluation (ASPE). ASPE partners with 12 HHS agencies to lead intradepartmental projects 

that build data capacity and infrastructure for conducting PCOR. 

AI/ML applications have the power to utilize large amounts of real-world clinical data in varied and complex 

formats to rapidly identify effective treatments, potentially accelerating clinical innovation and supporting 

evidence-based decisions in clinical settings iv,v,vi. However, the wide-spread application and adoption of 

AI/ML in health care and PCOR is wrought with challenges, including the lack of high-quality training data 

from which to build and maintain AI applications in healthvii. This Project was undertaken to address the 

challenge of the lack of availability of high-quality training datasets. This Project informs future work that 

aims to leverage AI/ML to develop scientific approaches to support personalized medicine so that providers 

can eventually match patients to the best treatments based on their specific health conditions, life-

experiences, and genetic/phenotypic profiles. 

To support the goal of conducting foundational work that will facilitate future applications of AI/ML and 

enhance PCOR data infrastructure, ONC partnered with the National Institutes of Health (NIH) National 

Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Through this Project, ONC and NIDDK 

have advanced the application of AI and ML algorithms in PCOR by defining requirements for high-quality 

training datasets. The Project used data from the United States Renal Data System (USRDS)viii to prepare 

high-quality training datasets and to apply ML techniques for a chronic kidney disease use case of 

predicting mortality within the first 90 days of dialysis. 

A technical expert panel (TEP) assembled for the Project, composed of AI/ML and health IT experts and a 

patient advocate, was instrumental in vetting the methodology, interpreting the findings, and helping to 

address the challenges encountered during the training dataset and ML development process. The TEP 

offered directional guidance and recommendations for other PCOR investigators to build upon the results 

of this Project and future opportunities related to the development and application of AI/ML to health, 

healthcare, and PCOR. 

This Project facilitates the broader application of AI/ML by PCOR researchers through the resources 

generated from this Project including the methodology used and lessons learned in building the training 

dataset and ML models, and recommendations for future projects gathered from the technical experts 

assembled for this Project (these resources include this Implementation Guide and Final Report). 

https://www.healthit.gov/topic/scientific-initiatives/pcor/machine-learning
https://usrds.org/
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Foundational knowledge gathered from this Project aligns with the goals of other PCORTF and ASPE 

funded projects aimed at enhancing the PCOR data infrastructure, including the Patient Matching, 

Aggregation, and Linking project that developed a framework to address data quality and data sharing, the 

privacy-preserving record linkage project that facilitates the linking of data from diverse data sources, and 

the more recent projects such as the building infrastructure and evidence for COVID-19 related research 

by developing synthetic linked data files or using split-learning ML techniques to enable health information 

exchange. Evidence generated from this Project also supports multiple federal and HHS investments, 

including the Precision Medicine Initiative (PMI), the Transitions in Care program conducted in coordination 

with the Department of Veterans Affairs, and agency-specific, and related NIDDK-funded kidney research 

programs such as the Kidney Precision Medicine Project. 

https://www.healthit.gov/topic/scientific-initiatives/pcor/patient-matching-aggregating-and-linking-pmal
https://www.healthit.gov/topic/scientific-initiatives/pcor/patient-matching-aggregating-and-linking-pmal
https://www.sciencedirect.com/science/article/pii/S0306437912001470
https://aspe.hhs.gov/building-infrastructure-and-evidence-for-covid-19
https://aspe.hhs.gov/using-machine-learning-techniques
https://aspe.hhs.gov/using-machine-learning-techniques
https://obamawhitehouse.archives.gov/precision-medicine
https://innovation.cms.gov/innovation-models/cctp#:~:text=The%20Community%2Dbased%20Care%20Transitions,for%20high%2Drisk%20Medicare%20beneficiaries.
https://www.kpmp.org/


Training Data for Machine Learning (ML) to Enhance Patient-Centered Outcomes Research (PCOR) Data 

Infrastructure 

 

ONC 

6 

2. Purpose of the Implementation 

Guide 

This Implementation Guide (IG) prepared for this Project will provide PCOR and other researchers with the 

detailed methodology for, and lessons learned from, building high quality training datasets and ML models. 

The methodology described in this IG was vetted with the TEP. The detailed methodology and points to 

consider described in this document aims to facilitate the application of ML for other kidney disease use 

cases and thereby enhance adoption and implementation of a PCOR data infrastructure. 
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3. Guidance to the Readers 

The following table provides a list of publicly available project documentation that can help the reader more 

fully understand the context and content of the Implementation Guide. 

Content What it Contains and its relationship to the Training Data IG 

Project Overview The artifact provides an overview of the Project, the use case selected 

for the Project, and the overall approach and methodology for building 

the training datasets and ML models 

Implementation Guidance This artifact provides details on the methodology and snippets of the 

code used for building the training datasets and ML models in this 

Project and points to consider for other researchers as they undertake 

similar work  

Data Dictionary This artifact describes the list of features (variables) in the training 

dataset that were either taken directly or constructed from the USRDS 

datasets along with the construction method  
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4. Glossary and Acronymns 

GLOSSARY 

Term Definition 

Algorithm A procedure for solving a mathematical problem in a finite number of 

steps that frequently involves repetition of an operation. Current term 

of choice for a problem-solving procedure, algorithm, is commonly 

used nowadays for the set of rules a machine (and especially a 

computer) follows to achieve a particular goal.ix 

Artificial Intelligence (AI) Artificial intelligence (AI) is a branch of computer science dealing with 

the simulation of intelligent behavior in computers; the capability of a 

machine to imitate intelligent human behavior.x 

Artificial neural network 

(ANN) 

An artificial neural network consists of a collection of simulated 

neurons. Each neuron is a node which is connected to other nodes 

via links that correspond to biological axon-synapse-dendrite 

connections. Each link has a weight, which determines the strength of 

one node's influence on another.xi  

Area under the curve (AUC) An evaluation metric that considers all possible classification 

thresholds along a curve that characterizes tradeoffs in classification 

operating characteristics (such as sensitivity, specificity, precision, 

recall, etc.). The area under the receiver operating characteristic 

curve (AUC ROC) is the probability that a classifier will be more 

confident that a randomly chosen positive example is actually positive 

than that a randomly chosen negative example is positive.xii Similarly, 

some researchers prefer, for the sake of its distinct interpretation of 

the resulting evaluation metric, area under the Precision-Recall curve. 

Common data element (CDE)  A common data element (CDE) refers to a data element that is 

common to multiple data sets across different studies, surveys, or 

registries. The intentional use of CDEs improves data quality and 

promotes data sharing.xiii 

Cross validation A mechanism for estimating how well a model will generalize to new 

data by testing the model against one or more non-overlapping data 

subsets withheld from the training set.xii 

Confusion Matrix  A table with two rows and two columns that reports the number of 

true positives, true negatives, false positives, and false negatives. 

Each row of the matrix represents the instances in an actual class 

while each column represents the instances in a predicted class, or 

vice versa.xiv 

Electronic health record 

(EHR) 

An EHR is a digital version of a patient’s paper chart. EHRs are real-

time, patient-centered records that make information available 

instantly and securely to authorized users. While an EHR does 
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Term Definition 

contain the medical and treatment histories of patients, an EHR 

system is built to go beyond standard clinical data collected in a 

provider’s office and can be inclusive of a broader view of a patient’s 

care. One of the key features of an EHR is that health information can 

be created and managed by authorized providers in a digital format 

capable of being shared with other providers across more than one 

healthcare organization. EHRs are built to share  information with 

other healthcare providers and organizations—such as laboratories, 

specialists, medical imaging facilities, pharmacies, emergency 

facilities, and school and workplace clinics—so they contain 

information from all clinicians involved in a patient’s care.xv 

End Stage Kidney (Renal) 

Disease (ESKD/ESRD) 

A medical condition in which a person's kidneys cease functioning on 

a permanent basis leading to the need for a regular course of long-

term dialysis or a kidney transplant to maintain life.xvi 

Feature An individual measurable property or characteristic of a phenomenon 

being observed. Choosing informative, discriminating and 

independent features is a crucial step for effective algorithms in 

pattern recognition, classification and regression.xvii 

Hyperparameter The "knobs" that you tweak during successive runs of training a 

model. For example, learning rate is a hyperparameter.xii 

Machine Learning (ML) The process by which a computer is able to improve its own 

performance (as in analyzing image files) by continuously 

incorporating new data into an existing statistical model.xviii 

Model The representation of what a machine learning system has learned 

from the training data.xii 

Patient-Centered Outcomes 

Research (PCOR) 

PCOR helps people and their caregivers communicate and make 

informed healthcare decisions, allowing their voices to be heard in 

assessing the value of healthcare options.xix 

Protected health information 

(PHI) 

The Privacy Rule protects all "individually identifiable health 

information" held or transmitted by a covered entity or its business 

associate, in any form or media, whether electronic, paper, or oral. 

The Privacy Rule calls this information "protected health 

information”.xx 

Personally identifiable 

information (PII) 

As defined in OMB Memorandum M-07-1616, PII refers to information 

that can be used to distinguish or trace an individual’s identity, either 

alone or when combined with other personal or identifying information 

that is linked or linkable to a specific individual.xxi 
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ACRONYMNS 

Acronym Explanation 

AI Artificial intelligence 

ANN Artificial neural network 

ASPE Assistant Secretary for Planning and Evaluation 

AUC Area under the curve 

AVF Arteriovenous fistula 

AVG Arteriovenous graft 

AWS Amazon Web Services 

BMI Body Mass Index 

CDC Centers for Disease Control and Prevention 

CDE Common data element 

CKD Chronic kidney disease 

CMS Centers for Medicare & Medicaid Services 

CPMAI Cognitive Project Management for Artificial Intelligence 

CRISP-DM Cross-Industry Standard Process for Data Mining 

CV Cross validation 

EHR Electronic health record 

EPO Erythropoietin 

ESKD End-stage kidney disease 

ESRD End stage renal disease 

GFR-EPI (Estimated) Glomerular Filtration Rate – CKD Epidemiology Collaboration 

HH Home health 

HHS The Department of Health and Human Services 

HIPAA Health Insurance Portability and Accountability Act 

HS Hospice 

IA Interagency Assembly 

ICD International Classification of Diseases 

IP Inpatient 

IRB Institutional Review Board 

IT Information Technology 

LR Logistic regression 

MEDEVID Medical Evidence 

MICE Multiple imputations by chained equations 

ML Machine learning 

MLP Multilayer perceptron 

MNAR Missing not at random 

NIDDK National Institute of Diabetes and Digestive and Kidney Diseases 

NIH National Institutes of Health 

ONC Office of the National Coordinator for Health Information Technology 

OP Outpatient 

PCOR Patient-centered outcomes research 

PCORTF PCOR Trust Fund 
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Acronym Explanation 

PDIS Primary disease causing renal failure 

PHI Protected health information 

PII Personally identifiable information 

PMI Precision Medicine Initiative 

PMM Predictive mean matching 

Postgres PostgreSQL 

PR Precision recall 

ROC Receiver operating characteristic 

SDOH Social determinants of health 

SGD Stochastic gradient descent 

SN Skilled nursing unit 

TEP Technical Expert Panel 

TX Transplant 

UCSF University of California San Francisco 

UNOS United Network for Organ Sharing 

USRDS The United States Renal Data System 

VA Veterans Affairs 

XGBoost eXtreme gradient boosting 

 

 



Training Data for Machine Learning (ML) to Enhance Patient-Centered Outcomes Research (PCOR) Data 

Infrastructure 

 

ONC 

12 

5. Project Overview 

BACKGROUND 

The Project was undertaken to help address the lack of availability of high-quality training datasets for 

PCOR research. High-quality training datasets that are well-labeled, well-structured, and use common data 

elements are essential to train prediction models that use ML algorithms, extract features most relevant to 

specified research goals, and reveal meaningful associations. To start, there is no standard definition of 

what constitutes a high-quality training dataset and, since ML models are custom tailored to the dataset on 

which it is trained, many ML practitioners define quality as a function of the ML model that will be developed 

(for example: some algorithms can inherently handle non-informatively missing values and others cannot). 

Nevertheless, there are baseline characteristics that all training datasets must have for successful use in 

developing ML applications. Towards identifying these baseline characteristics, and to develop a high-

quality training dataset that can be employed for addressing a kidney disease use case, this Project was 

implemented based on the following principles: 

• Engaging clinical domain experts throughout the course of the Project to ensure that 

the training datasets and ML models are clinically relevant and patient-centered  

• Pre-defining the quality criteria for, and validating its quality of, the prepared training 

dataset (e.g., by testing the goodness of the imputations performed for missing 

values)   

• Vetting the approaches and methodology used to build the training dataset and ML 

models, and reviewing the results and findings with a TEP consisting of AI/ML 

domain experts with broad experience in advanced ML techniques such as deep 

learning, health information technology (IT) solutions, and patient advocacy  

• Capturing and incorporating recommendations and points to consider when building 

training datasets and ML models provided by various stakeholders throughout the 

course of the Project  

• Disseminating Project progress and obtaining feedback from an Interagency 

Assembly (IA) with clinical and AI experts from across the federal agencies, including 

the NIH, FDA, the Centers for Medicare & Medicaid Services (CMS), Veterans Affairs 

(VA), Centers for Disease Control and Prevention (CDC), Census Bureau, etc. 

OVERALL APPROACH FOR BUILDING THE TRAINING DATASET AND 

ML MODELS 

The overall approach for building the training dataset and the ML models is based on the Cognitive Project 

Management for Artificial Intelligencexxii (CPMAITM) methodology, a detailed implementation of the widely 

used Cross-Industry Standard Process for Data Mining xxiii  (CRISP-DM) methodology, which defines a 

robust and proven approach for applying analytics to practical challenges. The CRISP-DM methodology 

has six phases, five of which are shown in Figure 1 below. The last phase of ‘Deployment’—the step of 

making the model available to end users of the model, such as in a clinic or a hospital or dialysis center—

is beyond the scope of this Project. 
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Figure 1: CRISP-DM Methodology Adapted for Clinical Research Applications 

 

 

The detailed methodology for each of the steps used in the Project as described in this Implementation 

Guide aligns to the Patient-Centered Outcomes Research Institute (PCORI) Methodology Standards 

Checklist to ensure that the overall study design addresses patient centeredness appropriately. 

USE CASE AND DATA SOURCE SELECTED FOR THE PROJECT 

Use Case 

For applying ML in PCOR and health care, clinically compelling patient centric use cases should be 

identified first rather than tailoring a use case to an existing, easily accessible (open) dataset. From a patient 

centered perspective, ML is particularly useful to predict potential outcomes prior to decisions that patients, 

in coordination with their providers, must make regarding whether to undergo treatment, which treatment 

to choose, and how to address potential adverse events once a treatment choice is made. Key to 

implementing ML for such prediction use cases is access to EHR and clinical research data that has been 

already collected and stored in various data repositories, such as the federally sponsored one employed in 

this project. 

At the initiation of this Project, upstream kidney disease use cases were considered based on discussions 

with the TEP, which included a patient advocate, who emphasized the need to move PCOR to focus on 

research prior to being diagnosed with kidney disease or earlier in kidney disease progression. Such use 

cases require access to EHR data, which offer high granular information on relevant features at the system-

, provider- and patient-level. It is to be noted that EHR data are particularly useful for a broad range of use 

cases focused on kidney disease. However, the Project Team faced the following challenges in trying to 

access EHR data stored in multiple federal and private repositories in a timely manner to address an 

upstream kidney disease use case within the two year project period (for reasons that may impact others 

pursuing similar applications of machine learning, thus are listed here for others’ benefit): 

• Data security concerns surrounding patient privacy and confidentiality 

• Contractual agreements with health systems that incur additional costs or (as in case 

of this Project) raise concerns about data-sharing among partnering organizations 

(e.g., when not all parties are HIPAA-covered entities) 

• Requirement for approval by ethical and other regulatory bodies, including the 

Institutional Review Boards (IRBs), and the differing processes for such approvals 

across health systems and repositories 

https://www.pcori.org/document/methodology-standards-checklist
https://www.pcori.org/document/methodology-standards-checklist
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Therefore, for this Project, the data source (USRDS) was selected before identifying the use case – 

predicting mortality in the first 90 days of dialysis. This use case focused on patients who had already 

progressed to ESKD/ESRD to build the training dataset and ML models. USRDS is the national data registry 

that stores and distributes data on the outcomes and treatments of Chronic Kidney Disease (CKD) and End 

Stage Kidney Disease (ESKD or End Stage Renal Disease, ESRDxxiv) population in the U.S. The kidney 

disease use case defined for the Project therefore was focused on ESKD/ESRD. Studies focused on 

ESKD/ESRD are particularly important as it is the only chronic kidney disease stage that is covered through 

CMS Medicare regardless of the age of the patient (that is, all ESKD/ESRD patients under or over 65 years 

of age are covered). 

ESKD/ESRD is associated with exceedingly high morbidity and mortality. Unfortunately, mortality in the first 

90 days of dialysis initiation also remains notably highxxv,xxvi. Although risk models do exist for predicting 

ESKD/ESRD, mortality in the first 90 days of dialysis is not well studiedxxvii,xxviii. From a patient-centered 

perspective, a model that predicts mortality in the first 90 days could inform patient-provider joint clinical 

decisions on whether to initiate dialysis and if so, which type of dialysis to initiate. Therefore, the specific 

use case—predicting mortality in the first 90 days of dialysis—was selected for the following reasons: 

• The first 90 days following initiation of chronic dialysis represent a high-risk period for 

adverse outcomes, including mortality 

• Studies of the end-stage kidney population have conventionally excluded this time 

period from analyses 

• While the sudden and unplanned start of dialysis is a known risk factor, other factors 

leading to poor outcomes during this early period have not been fully delineatedxxix,xxx 

• Tools to identify patients at highest risk for poor outcomes during this early period are 

lacking; however, such tools may inform discussions between clinicians and patients 

and their shared decision-making regarding dialysis initiation 

The purpose of this use case is to predict mortality in the first 90 days of dialysis initiation to potentially 

inform shared decision-making between patient and provider. 

Data Source 

Datasets were obtained from USRDS – the national data registry developed from resources initiated by 

CMS and its funded ESKD/ESRD networks and maintained by NIDDK – stores and distributes data on the 

outcomes and treatments of CKD and ESKD/ESRD population in the U.S. While USRDS data does not 

include complete EHRs for patients suffering from ESKD/ESRD, the data offers multiple advantages for 

preparing training datasets for this Project:  

• It provides the most comprehensive capture of ESKD/ESRD patients who initiated or 

are currently on dialysis 

• It links to several databases, including those related to organ transplantation and 

mortality 

• It incorporates the CMS Form 2728 (the “medical evidence” form) which covers all 

Americans suffering from ESKD/ESRD, so it is a relevant dataset on which to apply 

ML to predict ESKD/ESRD-specific outcomes. 

https://usrds.org/about/
https://usrds.org/about/
https://www.usrds.org/
https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/Downloads/CMS2728.pdf
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• As of 2006, CMS Form 2728 (MEDEVID dataset in USRDS) includes some 

information on how well prepared the patient was for dialysis – for example: whether 

the patient was under a nephrologist’s care prior to ESKD/ESRD and for how long. 

• It incorporates CMS claims data for patients before diagnosis with ESKD/ESRD, 

which contains information (such as claims for nephrology care) on how well 

prepared the patient was for dialysis.  

However, there are certain limitations with using the USRDS data for the use case—these include: 

• CMS claims data are only available for the Medicare population (65 and older, or 

younger patients diagnosed with ESKD/ESRD).  

• CMS Form 2728 is manually completed by clinical providers; therefore, it is prone to 

data entry errors. 

• CMS Form 2728 does not contain the full range of data relevant to kidney risk. For 

example, Form 2728 has serum creatinine and serum albumin readings but not urine 

creatinine or urine albumin (other biomarkers diagnostic of kidney disease and 

prognostic of its progression for some patients).  

• Sudden changes in serum creatinine levels contain important information about 

kidney function; the data on Form 2728 may not be collected frequently enough to 

detect these changes.  

• USRDS data lack continuous validation of its data collection/curation methods, lack 

complete comorbidity and laboratory data at registration, an initial survival bias in the 

data due to not including patients who die soon after ESKD/ESRD diagnosis (yet lack 

Medicare claims or data from CMS Forms), and a lack of accuracy of attributed 

cause-of-death reporting. 

Notwithstanding the limitations, based on the advantages listed above, a robust training dataset of 

approximately 1.15 million sample size was prepared from the USRDS datasets for applying ML to predict 

mortality in the first 90 days of dialysis. 

USRDS Dataset Mapping to the Selected Use Case 

The overall training dataset was prepared using variables in the USRDS data with clinical relevance and 

prognostic value for mortality in the first 90 days after dialysis initiation as determined by kidney disease 

experts from UCSF. Variables selected for the training dataset only include those known on or prior to the 

first day of dialysis. To ensure the training dataset and ML models are broadly applicable, the training 

dataset was prepared from routinely collected data available in the following USRDS datasets:  

• USRDS core tables: MEDEVID (Medical Evidence), PATIENTS, kidney transplant 

waitlist tables (WAITSEQ_KI, WAITSEQ_KP, and TX), from 2008 through 2017 

• Medicare pre-ESKD claims data (for assessing the degree to which a patient has 

been prepared for dialysis) from 2008 through 2017 

Figure 2 below shows the various USRDS datasets that were used to prepare the training dataset to 

address the selected use case of predicting mortality in the first 90 days of dialysis. 
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Figure 2: USRDS Datasetxxiv Mapping to the Use Case 

 

DEFINING HIGH QUALITY FOR THE TRAINING DATASET 

High quality training data sets are essential to train prediction models that use ML algorithms, extract 

features most relevant to specified research goals, and reveal meaningful associations. Challenges 

surrounding the availability of high-quality training datasets include: 

• Real world data collected via electronic health record (EHR) systems or from clinical 

research studies, registry-based data, and other data collection systems are 

complex, diverse, and often noisy, error-prone, have incorrect, outlier or missing 

values, and have inconsistent measures and values across multiple facilities, even 

within the same health care setting  

• Variables, even those often considered to be core features in a training dataset (e.g., 

dates, sex, race, ethnicity), are often not collected in a standardized format and can 

lack proper annotations Duplicate datasets for patients within the same EHR or data 

collection systems due to lack of provenance or audit trail of the data 

• Representativeness of observations/patients captured within an EHR system 

• Insufficient quantity of data with desired features for a specific ML use case   

• Regulatory and proprietary obstacles to accessing EHR data 

Health care providers and patients alike need to have high confidence the clinical decision supporting 

predictive or classifier AI tools developed are accurate and reliable. The availability of high-quality training 

datasets is therefore a fundamental requirement for developing and deploying ML tools in clinical settings.  

Building a high-quality training dataset and capturing the details of the methodology used and the lessons 

learned in the process was a primary objective of the Project. Towards that objective, the criteria for high 

quality were defined with input from various stakeholders, including the TEP. The criteriaxxxi and how they 

were applied to the training dataset are shown in Table 1 below.   
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Table 1: Criteria for a High-Quality Training Dataset 

Quality Criteria How addressed in the Training Dataset 

Features cleaned and 

correctly labeled  

(well-labeled) 

• Removed or flagged outliers, erroneous, suspicious, duplicate, and 

inconsistent values  

• Documented how outliers/inconsistencies were addressed across 

USRDS datasets (e.g., inconsistent coding practices, units, 

definitions)  

• Documented and validated any constructed or derived features, to 

ensure that methods/ equations were selected and applied correctly 

Dataset reliable and well 

curated  

(well-structured) 

• Merging and joining done correctly 

• Inclusion and exclusion criteria applied correctly (such as only 

including patients with valid dialysis start date, excluding patients <18, 

etc.) 

• Missing data patterns documented and addressed (Medicare pre-

ESKD/ESRD claims are missing for those who do not qualify for 

Medicare prior to ESKD/ESRD diagnosis) 

• Centering/scaling/standardizing some variables for analysis or 

balancing the data based on the algorithm that was used 

• Excluded operational factors such as location, provider, and masked 

dates when building features 

• Train/test/validation split done such that the training data is 

representative of the rest of the data 

• Data dictionary created  

Use common data 

elements (CDEs) 
• Used CDEs for constructed features 

• For features pulled directly from USRDS dataset, CDEs were based 

on what was used by USRDS 

METHDOLOGY FOR BUILDING THE TRAINING DATASET AND 

ML MODELS – OVERVIEW  

Data De-identification 

USRDS provides ‘limited datasets’ with most of the personally identifiable information (PII) removed but 

retaining certain limited PII such as dates and geographic (location) variables under a ‘controlled-access’ 

model requiring oversight (per Federal Human Subjects Protection regulation) by an Institutional Review 

Board (IRB; often referred to as Ethics Committees in other nations). To comply with requirements from the 

Project Team’s study IRB (from UCSF), these two variables were de-identified before use in this Project. 

USRDS data received in sas7bdat format were de-identified as per the Safe Harbor method of the Health 

Insurance Portability and Accountability Act (HIPAA)xxxii using a SAS script. All date variables in USRDS—

other than variables which contain only the year (with no month or day information)—were de-identified by 

offsetting all date fields by a randomly-chosen number specific to each patient included in the USRDS data. 

For location variables, the zip code and county Federal Information Processing Standard Publication (FIPS) 

https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
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codes variables were deleted. The accuracy of the date de-identification was validated by comparing a 

sample of the relative date ranges in the de-identified data to the relative date ranges in the source data 

(for additional details, refer to section 6.2.0 in the Implementation Guidance).  

Building the Cohort and Outcome Variable 

The following criteria was applied to the dataset for selecting the cohort for the Project: 

• An existing date of first dialysis treatment (n=3,096,526)  

• Death date not before first dialysis treatment (n=3,096,515)  

• Adults (age >=18 years old) (n=3,065,026)  

• Incident year from 2008-2017 (n=1,150,195)  

The outcome variable for the selected use case is whether a patient died within the first 90 days of dialysis 

initiation. Additional details for preparing the study cohort are available in sections 6.2.1 and 6.2.4 in the 

Implementation Guidance. 

Feature Selection 

The full training dataset of 1,150,195 derived from the raw USRDS datasets was developed by building 

features that had clinical relevance and prognostic value to the use case – predicting mortality in the first 

90 days of dialysis. Each feature captures information known about a patient on or prior to the date of 

dialysis initiation. The final structure of the training dataset, which was used to train and test the ML models, 

consisted of 188 features, and has one record per patient. Two sets of features were included in the training 

dataset – features taken directly from the USRDS datasets (e.g., age, race, and hemoglobin) and features 

that were constructed (e.g., time on kidney transplant waitlist, number of pre-ESKD/ESRD claims). A 

detailed list of both sets of features, including the construction methods are provided in the Data Dictionary. 

Kidney disease experts from UCSF (part of the Project Team) defined the upper and lower bounds of the 

clinical and laboratory features (e.g., height, weight, serum creatinine) that were used in the training dataset, 

such that any values outside these bounds were considered clinically impossible; these outlier values were 

set as missing (for additional details, refer to section 6.2.18 in the Implementation Guidance).  

Building the Training Datasets and the ML Models 

Figure 3 below shows the overall methodology undertaken to build the training datasets, the data flow 

through the ML models, and the output of those models. The training dataset with the full set of features 

was partitioned randomly into 10 stratified non-intersecting subsets to handle the large data size more 

effectively for modeling. These 10 partitions were further split into training and testing datasets at 

approximately a 70/30 ratio to allow sufficient data to both train and robustly evaluate the models. Multiple 

imputation was done using the ‘mice’ (multiple imputations by chained equationsxxxiii) library (version 3.13.0) 

in R and using five imputations to target at least 95% relative efficiency under commonly-adopted 

assumptions about the fraction of missing information (not explicitly derived, however, in the case of models 

and associated estimands/predictions entertained here)xxxiv. Two datasets—a non-imputed dataset and an 

imputed dataset—were prepared and utilized for ML modeling. More information on the MICE imputation 

and predictive mean matching (PMM) method used in this Project can be found in Section 6.2.19 of the 

Implementation Guidance. 
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Clinical and laboratory variables with fewer than 40% missing values were included as features in the 

training dataset because multiple imputations are not advised for any application beyond hypothesis 

generation when features contain more than 40% missing values, without very restrictive assumptions 

about how the missing values occurredxxxv,xxxvi. For both datasets, clinical and laboratory variables that had 

missing values for more than 40% of patients were excluded. Variables that were missing in less than 40% 

of patients were imputed to prepare the imputed dataset – these included height, weight, BMIxxxvii, serum 

creatinine, serum albumin, hemoglobin, and GFR-EPIxxxviii.  

Figure 3: Overview of the Methodology for Building the Training Dataset and the ML Models 

 

Three ML algorithms were selected with input from the TEP to provisionally test the training dataset: 

eXtreme gradient boosting (XGBoost), logistic regression (LR), and multilayer perceptron (MLP), an artificial 

neural network implementation. These algorithms are a mixture of non-parametric (XGBoost) and 

parametric (LR and MLP) models. 

• XGBoost is a popular implementation of gradient boosted decision trees because it 

performs especially well for tabular data, can be applied to a wide array of use cases, 

data types, and desired prediction outcomes (regression vs classification), and can 

handle non-informative randomly-missing values by defaultxxxix. Such tree-based 

algorithms learn branch directions for missing values during training, which allows for 

a comparison between models run on non-imputed data versus models run on 

imputed data. 

• Logistic regression is a classic categorization model that can be used to examine the 

association of (categorical or continuous) independent variable(s) with one binary 

dependent variable. However, it requires that the input dataset have no missing 

values. 
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• Multilayer perceptron is a class of hierarchical artificial neural network (ANN) that 

consists of at least three layers of nodes—an input layer, a hidden layer and an 

output layer—to carry out the process of ML. They are used for tabular datasets and 

classification prediction problems.  

The XGBoost models were prepared using both the non-imputed dataset containing missing lab values and 

the imputed dataset, whereas the LR and MLP models were prepared using only the imputed datasets as 

these cannot handle missing values.  

ML algorithms have differing requirements for the input training dataset; hence, to prepare the training 

dataset for XGBoost, logistic regression, and multilayer perceptron models, several additional data 

processing steps were performed (for additional details, refer to sections 6.3.1.1, 6.3.2.1, 6.3.3.1, and 

6.3.4.3 in the Implementation Guidance). 

• The input of all three models must be numeric so all categorical features were one-

hot encoded into numeric indicators of each factor in the categorical features (e.g., 

the sex feature was converted into 3 columns: sex_1 (male), sex_2 (female), sex_3 

(unknown) through one-hot encoding). Since XGBoost models take numeric values 

as input and can handle missing values and class imbalance, the XGBoost model 

can use the training dataset after one-hot encoding the categorical features.   

• Logistic regression and multilayer perceptron modelsxl cannot inherently handle 

missing values as opposed to a tree-based model like XGBoost which learns to 

handle missing values during training; therefore, the specific numeric pre-

ESKD/ESRD claims features with a large percentage of missing data (~40%) were 

removed from the training datasetxli. Only the binary pre-ESKD/ESRD features, which 

were converted to categorical (i.e., 0=not present, 1=present, 2=missing), were 

retained in the training dataset for these two models. This effectively allowed 

retaining the meaning of whether the data was present or missing for the claims 

features. 

• The numeric features for logistic regression and multilayer perceptron models were 

scaled and normalized as follows: 

o Removed features that had zero variance (variables that have only a single 

value) from the training dataset because the presence of these variables does 

not add information to the modelxlii,xliii  

o Numeric variables constructed from the pre-ESKD/ESRD Medicare claims with 

missing values (such as claims counts, diagnosis groupings, etc.) were removed 

and only the binary features (such as indicators for claims in each care setting, 

indicators for each diagnosis group, and indicators for pre-ESKD/ESRD claims) 

were kept.  
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o Standardized each numeric feature to have a mean of zero and a standard 

deviation of one—the mean of each numeric feature was subtracted from each 

value and then divided by the standard deviation. Standardization allows for 

comparison of multiple features in different units and the penalty (e.g., L1) will be 

applied more equally across the features. Both logistic regression and multilayer 

perceptron models will learn the importance of features better and faster when 

they aren’t overwhelmed by a feature with a much larger range than the others.  

• Neither logistic regression nor multilayer perceptron models perform well without 

some additional tailoring when the outcome variable is imbalanced (or heavily 

skewed towards one outcome). The outcome variable (died in 90 days) in the training 

dataset for these two models was rebalanced through weighting (the weight 

parameter in the model to give more weight to the minority class and less to the 

majority class). Balancing the data ensures that the models have sufficient data from 

both outcome classes (died vs. survived) on which to train. This results in a better 

trade-off between sensitivity and specificity, which is important for this dataset where 

mortality is predicted. 

Hyperparameter tuning varied between the non-imputed and imputed datasets. Hyperparameters were 

tuned for the non-imputed dataset with a Bayesian optimization approach, and then a 5-fold cross validation 

was used to identify the optimal hyperparameters for the model. The best performing model was evaluated 

by the selecting the hyperparameter combination with the highest AUC. Hyperparameters were tuned for 

the imputed datasets using a two-tiered approach: first, Bayesian optimization and 5-fold cross validation 

were used for each imputed dataset to narrow the ranges for the hyperparameter space. The highest and 

lowest values for each hyperparameter over the five imputed datasetsxliv were set as the new ranges to use 

in a random grid search. From the new hyperparameter space, 25 hyperparameter combinations were 

randomly generated and tested. For each hyperparameter combination, the prediction scores for each 

imputed dataset were pooled via averaging per Rubin’s rulesxlv (performing analysis on each imputed 

dataset and averaging the parameter estimates to obtain a single estimate so that the variance estimates 

would reflect the appropriate uncertainty surrounding parameter estimates). These averaged predictions 

were used to calculate the AUC for each hyperparameter combination. The best performing model was 

evaluated by the selecting the hyperparameter combination with the highest AUC (for additional details, 

refer to sections 6.3.1.2, 6.3.2.2, 6.3.3.1, and 6.3.4.4 in the Implementation Guidance).  

To explore how closely the predicted events rates align to the observed rates (which is more informative to 

clinicians) across the full range of predicted risk scores, both XGBoost models were calibrated using a non-

parametric isotonic regressor trained on 66% of the testing dataset and evaluated on the remaining 33% of 

the testing dataset. Calibration (reliability) curves were plotted to reveal each prediction score decile, the 

number of patients that fall into each decile, and the proportion of patients in each decile who actually died 

in the first 90 days following dialysis initiation. 

All models were evaluated using conventional metrics – receiver operating characteristic (ROC) area under 

the curve (AUC) and a confusion matrix (used to calculate metrics such as sensitivity, specificity, positive 

predictive value, likelihood ratio, F1 score, etc.). Additional details are provided for the models in sections 

6.3.1 – 6.3.4 in the Implementation Guidance. 
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6. Implementation Guidance 

Implementation Guidance provides details on the methodology along with snippets of the code used for 

building the training datasets and ML models in this Project, and points to consider for other researchers 

as they undertake similar work.  
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7. Data Dictionary 

The final structure of the training dataset, which was used to train and test the ML models, consists of 188 

features, and has one observation per patient. Two sets of features were included in the training dataset: 

features taken directly from the USRDS datasets and features that were constructed. The full list of features 

and the detailed method for the features that were constructed from PATIENTS, MEDEVID and Medicare 

pre-ESKD/ESRD claims data are provided in the Data Dictionary.  
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