
2-implementation-guidance.md 8/27/2021

1 / 198

Training Data for Machine Learning to Enhance PCOR
Data Infrastructure

Implementation Guidance

6.1 Data Understanding

6.2 Overall Training Dataset

6.2.0 Deidentify the Data

6.2.1 Overview of Cohort Creation

6.2.2 Connect to Postgres Database

6.2.3 Convert Data to CSV

6.2.4 Create Patients Table

6.2.5 Create Medevid Table

6.2.6 Join Patients to Medevid

6.2.7 Create Transplant Waitlist Features

6.2.8 Create Partition Data

6.2.9 Join patients_medevid_waitlist Table to the Partition Index

6.2.9.1 Calculate Demographic Subtotals Per Partition

6.2.10 Get Pre-ESRD Claims Data

6.2.11 Create Claims Tables

6.2.12 Map Diagnosis Codes (drg_cd) to Primary Diagnosis Codes (pdgns_cd)

6.2.13 Get pre-2011 pre-ESRD Claims Data

6.2.14 Diagnosis Groupings

6.2.15 Aggregate pre-ESRD Claims Data

6.2.16 Join the preesrdfeatures Tables to the Partition Index

6.2.17 Map ICD-9 to ICD-10

6.2.18 Prepare Data for Modeling

6.2.19 Impute Missing Values

6.2.20 Utility Files

dx_mappings_ucsf.csv

2017_I9gem_map.txt

icd10_ccs_codes.R

icd10_dx_codes.txt

icd9_ccs_codes.R

icd9_dx_2014.txt

imputation_rules.xlsx

pre_esrd_ip_claim_variables.R

pre_esrd_hh_claim_variables.R

pre_esrd_hs_claim_variables.R

pre_esrd_op_claim_variables.R

pre_esrd_sn_claim_variables.R

pre_esrd_pre2011_claim_variables.R

setfieldtypes.R

6.2.21 Documentation of the Training Dataset



2-implementation-guidance.md 8/27/2021

2 / 198

6.3 ML Modeling and Evaluation

6.3.1 Non-Imputed XGBoost Model

6.3.1.1 Pre-processing the training dataset

6.3.1.2 Hyperparameter tuning for the non-imputed dataset

6.3.1.3 Final XGBoost model for the non-imputed dataset

6.3.1.4 Calibration

6.3.1.5 Plotting calibrated results

6.3.1.6 Saving data for the fairness assessment

6.3.1.7 Fairness assessment

6.3.1.8 Risk assessment

6.3.2 Imputed XGBoost Model

6.3.2.1 Pre-processing the training dataset

6.3.2.2 Hyperparameter tuning for each imputed dataset

6.3.2.3 Pooled hyperparameter tuning

6.3.2.4 Final imputed XGBoost model

6.3.2.5 Calibration

6.3.2.6 Plotting calibrated results

6.3.2.7 Saving data for the fairness assessment

6.3.2.8 Fairness assessment

6.3.2.9 Risk assessment

6.3.3 Logistic Regression (LR) Model

6.3.3.1 Pre-processing the training dataset

6.3.3.2 Hyperparameter tuning and final logistic regression model

6.3.3.3 Pool results

6.3.3.4 Plot results

6.3.3.5 Feature importance

6.3.3.6 Fairness assessment

6.3.3.7 Risk assessment

6.3.4 Artificial Neural Network--Multilayer Perceptron (MLP) Model

6.3.4.1 Run docker container (optional)

6.3.4.2 Run on a server (i.e. AWS)

6.3.4.3 Pre-processing the data

6.3.4.4 Hyperparameter tuning

6.3.4.5 Building layers and compiling the model

6.3.4.6 Final MLP model

6.3.4.7 Pool results

6.3.4.8 Plot results

6.3.4.9 Fairness assessment

6.3.4.10 Risk assessment

6.1 Data Understanding

The source data for building the overall training dataset was obtained from the United States Renal Data

System (USRDS), the national data registry developed from resources initiated by the Centers for Medicare

& Medicaid Services (CMS) and its funded end-stage kidney disease (ESKD) networks and subsequently

maintained by the National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK). USRDS stores



2-implementation-guidance.md 8/27/2021

3 / 198

and distributes data on the outcomes and treatments of chronic kidney disease (CKD) and ESKD population

in the U.S. (Note: to be consistent with USRDS terminology for data tables, this document uses end stage

renal disease - ESRD - instead of ESKD.) To better understand the data, data profiling was performed on the

demographic variables and the outcome variable of interest (mortality in the first 90 days of dialysis).

Information on constructing the outcome variable can be found in Section 6.2.4 Create Patients Table.

The distribution of patients in the cohort who survived versus died in the first 90 days after dialysis

initiation: 



2-implementation-guidance.md 8/27/2021

4 / 198

The age distribution of patients who survived versus died in the first 90 days after dialysis initiation: 

The sex distribution of patients who survived versus died in the first 90 days after dialysis initiation: 



2-implementation-guidance.md 8/27/2021

5 / 198

The distribution by race of patients who survived versus died in the first 90 days after dialysis initiation: 

6.2 Overall Training Dataset

Section 6.2 details the methodology used to create the overall training dataset. A high level overview of the

tables used for the training dataset can be found in Section 6.2.1 Overview of Cohort Creation and results in

a final dataset with 1,150,195 observations and 188 variables. The final dataset used for modeling is stored

in PostgreSQL (Postgres) tables called medxpreesrdfor the non-imputed variables and
micecomplete_pmmfor the imputed variables (5 sets of imputations were generated; more information on
imputations can be found in Section 6.2.19 Impute Missing Values).

The construction of medxpreesrd involves using more than 20 USRDS data tables, as well as publicly

available data, for mapping diagnosis codes to groupings.

All scripts are located in the DataSet/ directory on GitHub.

Two types of files are involved in constructing medxpreesrd:

�. Sequential scripts - these have the prefix S0-, "S1-", etc. to indicate the sequence in which they are

run

�. Utility scripts - these create the data used by the sequential scripts

Other resources that could be helpful to users include:

USRDS Researcher's Guide

USRDS Researcher's Guide Appendix A

USRDS Researcher's Guide Appendix B

USRDS Researcher's Guide Appendix C

USRDS Researcher's Guide Appendix D

6.2.0 Deidentify the Data

https://www.usrds.org/media/2211/usrds_res_guide_app_b_datafiledescrip_16.pdf
https://www.usrds.org/media/2457/usrds_res_guide_appendix_a-2020.pdf
https://www.usrds.org/media/2458/usrds_res_guide_appendix_b_2020.pdf
https://www.usrds.org/media/2459/usrds_res_guide_appendix_c_2020.pdf
https://www.usrds.org/media/2460/usrds_res_guide_appendix_d_2020.pdf


2-implementation-guidance.md 8/27/2021

6 / 198

The data received from USRDS was de-identified before use to comply with the approved University of San

Francisco (UCSF) institutional review board (IRB) study plan. As per the Health Insurance Portability and

Accountability Act (HIPAA) guidance, the following are identifiers:

All elements of dates (except year) for dates directly related to an individual, including birth date,

admission date, discharge date, date of death

All ages over 89 and all elements of dates (including year) indicative of such age, except that such

ages and elements may be aggregated into a single category of age 90 or older

All geographic subdivisions smaller than a state, including street address, city, county, precinct, zip

code, and their equivalent geocodes

The date variables in USRDS were de-identified by offsetting each date by a randomly chosen number

specific to each patient. For example, if first ESRD service date is April 5, 2016 and the random offset is 60

days, then first ESRD service day is transformed to April 5, 2016 plus 60 days (or June 5, 2016); for the

same patient, if the date of birth is Sept 1, 1950, then date of birth gets transformed to Sept 1, 1950 plus 60

days (or Nov 1, 1950). The ages of patients were de-identified by setting the age of all patients over the age

of 90 to 90. The location variables were de-identified by removing all location variables (zip code, etc.) from

the dataset.

Points to consider

�. Other methods can be used to de-identify locations without completely deleting the variables, such

as by combining all zip codes with the same three initial digits to form geographic units containing

more than 20,000 people according to the current publicly available data from the Bureau of the

Census. For all such geographic units containing 20,000 for fewer people, the initial three digits

should be changed to 000.

�. Complete de-identification of the datasets obtained from USRDS was performed to comply with

UCSF IRB requirements. Not all IRBs may require that PII/PHI be de-identified prior to use in a project.

Future researchers may consider working with their IRB to ensure that relevant identifier variables for

a specific use case are retained in the source dataset used for building the training datasets and ML

models.

6.2.1 Overview of Cohort Creation

This diagram is a high level view of the tables used to create the cohort for the dataset. The number of rows

and/or patients is listed at each stage of the cohort selection. Each of these R scripts is detailed below in

the guide. The colors represent the following items:

Yellow = R scripts

Pink = Tables in the PostgreSQL database

Green = Inclusion criteria



2-implementation-guidance.md 8/27/2021

7 / 198

yes

yes

yes

yes

INPUT: patients.csv

no

no

patients_medevid

patients usrds_id

yes

no

yes

yes exclude

S1b_patients.R

yes

no

S1c_medevid.R

INPUT: medevid.csv

3,161,638 rows

3,096,526 rows

masked_firstdial
= missing

death date>
masked_firstdial

3,096,515 rows

inc_age< 18

3,065,026 rows

incyear<= 2007
or

incyear>= 2018

1,150,195 rows

usrds_id in
patients

3,320,673 rows

no

Is first entry for
usrds_id?

yes

1,170,585 rows
1,150,195 usrds_ids

medevid

yes

1,150,195 rows

no

S1d_patients_medevid_join.R

1,150,195 rows

S1e_patients_medevid_waitlist.R

INPUT: waitseq_ki.csv

INPUT: waitseq_kp.csv

INPUT: tx.csv

usrds_id

usrds_id in
patients

exclude

waitseq_ki

usrds_id in
patients

waitseq_kp

USRDS_ID in
patients

tx

patients_medevid_waitlist

1,150,195 rows

6.2.2 Connect to Postgres Database

Steps for running the S0-connectToPostgres.R script

This script creates and calls a function to 1) create a connection to a Postgres database and 2) drop a

Postgres table if it exists. Both of these functions are used heavily throughout the dataset creation and are

typically loaded into the top of each script. Each user will have their own details for connecting to Postgres.

Environment:

The Postgres Database for this project was hosted in an Amazon Web Services (AWS) environment with the

following specifications:

Name: t2.large 
vCPU: 2 
GPU: 0 
Architecture: x86_64 
Memory: 8 GB 
Storage: 500 GB 
Operating System: Windows 
Network Performance: low to moderate 
Zone: US govcloud west 

The overall training dataset set was created using R (version 3.6.3 (2020-02-29) running on x86_64 Linux

Ubuntu 20.04.1 LTS) and a PostgreSQL database (PostgreSQL 12.3, compiled by gcc (GCC) 4.8.3 20140911

(Red Hat 4.8.3-9), 64-bit). The specific R libraries and versions are shown in the table below:



2-implementation-guidance.md 8/27/2021

8 / 198

R library VersionR library Version

RPostgres 1.3.1

DBI 1.1.1

stringr 1.4.0

haven 2.4.0

readr 1.4.0

lubridate 1.7.9.2

dplyr 1.0.4

magrittr 1.5

tidyr 1.1.2

sqldf 0.4-11

RSQLite 2.2.3

gsubfn 0.7

proto 1.0.0

readxl 1.3.1

plyr 1.8.6

mice 3.13.0

Input:

Name of the database  
database port 
user name 
user password 

Step 1. Create function for connecting to Postgres.

dbConnect( 
 RPostgres::Postgres(),  
 dbname = cred$dbname,   
 host=cred$host,  
 port=cred$port,  
 user=cred$user,  
 password=cred$password 
 ) 
- Output:  
 - An object called "con" that can be used in database queries.  



2-implementation-guidance.md 8/27/2021

9 / 198

- Example:  
con = getConnection() 

Step 2. Create function for dropping a Postgres table if it exists.

drop_table_function <- function(con, tablename) { 
  if (isTRUE(dbExistsTable(con, tablename)))   { 
    print(str_glue("existing {tablename} table dropped")) 
    dbRemoveTable(con, tablename) 
  } 
  else { 
    print(str_glue("{tablename} table does not exist")) 
  } 
} 

6.2.3 Convert Data to CSV

Steps for running the S1a_convertSAStoCSV.R script

This script reads in a list of files from the raw source data (.sas7bdat files in USRDS data) and saves them

as a .csv file. The reason for this conversion to CSV before loading into R is that the SAS files contain more

information than is needed/able to store in Postgres or an R table, such as categorical variable encodings

that are also documents in the USRDS Researchers Guide Appendix B and C.

Input:

source_data_dir string path to the raw data file

file_name string name of the file without the extension

output_data_dir string path to the output directory for csv files

Ouput:

A .csv version of the file with the same file_name

Step 1. Convert and combine the raw source data from .sas7bdat files to .csv files

convert_to_csv = function(source_data_dir, file_name, output_data_dir) { 
  raw_file_path = haven::read_sas(str_glue("{source_data_dir}
{file_name}.sas7bdat")) 
  csv_path = str_glue("{output_data_dir}{file_name}.csv") 
  write_csv(raw_file_path, csv_path) 
} 

Example:

convert_to_csv("/home/sas_data_usrds/", "patients", 
"/home/csv_data_usrds/")}  



2-implementation-guidance.md 8/27/2021

10 / 198

6.2.4 Create Patients Table

Steps for running the S1b_patients.R script

This script creates the table patientsin the Postgres database, after filtering on the criteria to create the
study cohort and the dependent variable (died in the first 90 days of dialysis).

Input: csv files are produced in script S1a-convertSAStoCSV.R

patients.csv 

Output: Postgres table

patients 

Step 1. Import patients and apply exclusion criteria

cohort_patients = read_csv(file.path(data_dir, "patients.csv"), col_types 
= cols( 
      CDTYPE = "c")) 
    
names(cohort_patients) = tolower(names(cohort_patients)) 

Connect to the Postgres database using the S0-connectToPostgres.R script, which results in the variable

con that is used in the queries to Postgres. This also imports the drop_table_function used when creating

a Postgres table. These functions are used in almost every script and will be imported at the top in the

code.

source(file.path(source_dir, "S0-connectToPostgres.R")) 

Store the raw cohort_patients data as "patients" table in Postgres (after dropping the table if it exists).

fields = names(cohort_patients) 
drop_table_function(con, "patients")  
   dbCreateTable( 
      con, 
      name = "patients", 
      fields = cohort_patients, 
      row.names = NULL 
   ) 
dbWriteTable( 



2-implementation-guidance.md 8/27/2021

11 / 198

      con, 
      name = "patients", 
      value = cohort_patients, 
      row.names = FALSE, 
      append = TRUE 
   ) 

The patients table holds the data for the 1,150,195 patients (rows) in the cohort which is created by

excluding the following rows:

age less than 18

incident year before 2008

incident year after 2017

first dialysis date is missing

death date is before first dialysis date (one patient)

The script does each exclusion criteria separately to calculate the number of rows/patients at each stage,

but the exclusion can be done more simply with one SQL query shown below (and commented out in the

script).

exclude_patients = str_glue( 
                               "DELETE FROM patients 
                               WHERE inc_age<18 
                               OR incyear>2017 
                               OR incyear<2008 
                               OR masked_firstdial IS NULL 
                               OR masked_died<masked_firstdial" 
    ) 
dbSendStatement(con, exclude_patients) 

Step 2. Using the create_dependent_var function, check that set all inc_age greater than 90 to be 90.

This step doubles checks that all patients with age > 90 are set to 90.

patients_dependent_var = cohort_patients %>% 
  mutate(inc_age=ifelse(inc_age>90, 90, inc_age), 

Step 3. Create the days_on_dial variable by converting the masked_died and masked_firstdial to a date

and by calculating the number of days between them.

  masked_firstdial = as_date(masked_firstdial, origin = "1960-01-01"), 
  masked_died = as_date(masked_died, origin = "1960-01-01"), 
  days_on_dial = as.double(difftime(masked_died, 
                                  masked_firstdial, 
                                  units = "days")), 



2-implementation-guidance.md 8/27/2021

12 / 198

Step 4. Create the dependent variable (outcome variable) died_in_90 by setting all patients with a value for

days_on_dial to 1 (died) and patients with no value for days_on_dial to 0 (survived).

  died_in_90 = ifelse(is.na(days_on_dial), 0, ifelse(days_on_dial <= 90, 
1, 0)), 

Step 5. Convert data variables to dates that are used to calculate waitlist and transplant status.

  masked_first_se = as_date(masked_first_se, origin = "1960-01-01"), 

can_first_listing_dt is the first date patient is ever waitlisted.

  masked_can_first_listing_dt = as_date(masked_can_first_listing_dt, 
origin = "1960-01-01"), 

can_rem_dt is the date patient was removed from the waitlist the first time.

  masked_can_rem_dt = as_date(masked_can_rem_dt, origin = "1960-01-01"), 
  masked_tx1date = as_date(masked_tx1date, origin = "1960-01-01"), 
  masked_tx1fail = as_date(masked_tx1fail, origin = "1960-01-01") 

Step 6. Save this table to Postgres as patients after dropping the initial patients table.

drop_table_function(con, "patients")  
   dbCreateTable( 
      con, 
      name = "patients", 
      fields = patients_dependent_var, 
      row.names = NULL 
   ) 
   dbWriteTable( 
      con, 
      name = "patients", 
      value = patients_dependent_var, 
      row.names = FALSE, 
      append = TRUE 
   ) 

Points to consider

�. The study cohort as well as the outcome variable for the use case should be driven by a strong

clinical understanding of the data and defined with clinician input. For example, kidney transplant



2-implementation-guidance.md 8/27/2021

13 / 198

events occurring within the first 90 days of initiating dialysis were evaluated as a potential competing

outcome for death. However, since only less than 1% of the patient cohort recieved kidney

transplants, retaining the patients in the study cohort would likely have only a small effect on

modeling. After consultating with clinicans and the Technical Expert Panel, it was determined that

patients with kidney transplants should be retained in the patient cohort for the purposes of this

analysis.

�. The origin date when converting data variables to readable dates is 1960-01-01.

6.2.5 Create Medevid Table

The Medevid table contains the data from CMS Form 2728 -- Medical Evidence Form, a form required to be

completed and submitted when a patient is diagnosed with ESRD and receives their first chronic dialysis

treatment(s) or receives a transplant. Medevid contains data on patient demographics, insurance status,

comorbid conditions, primary cause of kidney failure, and laboratory values at the time of ESRD diagnosis

as well as prior nephrology care, dietician care, and patient education.

Steps to running the 4.1.5 S1c_medevid.R script

This script creates the medevid table in Postgres database. The medevid table is filtered based on the

following:

Keep only rows with a matching usrds_id from our patients table

For usrds_ids with multiple entries, select the first entry (in the table order) for each usrds_id

The final table results in 1,150,195 patients/rows

Input: csv files are produced in script S1a-convertSAStoCSV.R

patients 
medevid.csv 

Output: Postgres table

medevid 

Step 1. Import medevid data

raw_medevid = read_csv(file.path(data_dir, filename), col_types = cols( 
      CDTYPE = "c", 
      masked_UREADT = "c", 
      ALGCON = "c", 
      PATNOTINFORMEDREASON = "c", 
      RACEC = "c", 
      RACE_SUB_CODE = "c")) 
    
   names(raw_medevid) = tolower(names(raw_medevid)) 

https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/Downloads/CMS2728.pdf


2-implementation-guidance.md 8/27/2021

14 / 198

Step 2. Import the usrds_ids from the patients table

patients_filtered = dbGetQuery( 
      con, 
      str_glue( 
         " 
         SELECT * 
         FROM {table_name_pt} 
         ")) 

Step 3. Remove unused columns

Columns with the comorbidities that were only collected in the 1995 version of the Medical Evidence Form

were removed from the training dataset as patients with ESRD incident years between 2008-2017 do not

have this data collected.

medevid_ids_filtered = raw_medevid %>%  
      select(-c( 
                  "como_ihd", 
                  "como_mi", 
                  "como_cararr", 
                  "como_dysrhyt", 
                  "como_pericar", 
                  "como_diabprim", 
                  "como_hiv", 
                  "como_aids")) %>% 

Step 4. Filter on usrds_ids from the patients table

      filter(usrds_id %in% patients_filtered$usrds_id)  

Step 5. Keep first row of medevid data if a usrds_id has more than one, per the USRDS Researcher's

Guide for de-duplicating the medevid table

medevid_filtered = medevid_ids_filtered %>% 
      distinct(usrds_id, .keep_all = TRUE) %>% 

Step 6. Calculate the dialysis train time in days

      mutate( 
         masked_trnend = as_date(masked_trnend, origin = "1960-01-01"), 
         masked_trstdat = as_date(masked_trstdat, origin = "1960-01-01"), 
          



2-implementation-guidance.md 8/27/2021

15 / 198

         dial_train_time = as.double(difftime(masked_trnend, 
                                              masked_trstdat, 
                                              units = "days")) 
      ) 

Points to consider

�. It is important not to sort or alter the order of (or import into a SQL database) the medevid table

before selecting the first entry per usrds_id for the medevid table. This order of the entries from the

medevid table is curated as per the USRDS Researcher's Guide, which advises users to selected the

first medevid entry for analysis. For other use cases, especially those requiring a longtitudinal

dataset, the multiple MEDEVID records per patient may need to be retained. Decisions on how to

handle the duplicated data should be made with the proposed use case in mind.

�. Constructed features should be validated with clinicians to ensure that they are meaningful. For

example, several preliminary features were initially constructed from the variables in the medevid
table to serve as a proxy for prior nephrology care, such as whether a physician signature was

present on the Medical Evidence form, the time between a patient signature and physician signature

on the Medical Evidence Form, etc. After discussing these features with the clinicians on the team, it

was determined that since a nephrologist's signature is required when a patient is referred for dialysis

treatment, the signature date field is not a good proxy measure.

6.2.6 Join Patients to Medevid

Steps to running the S1d_patients_medevid_join.R script

This script creates the patients_medevid table in Postgres database. The patients_medevid table

consists of the patients table with the data from the medevid table added via left join on usrds_id.

Input: Postgres tables

patients 
medevid 

Output: Postgres table

patients_medevid 

The result of this script produces the same 1,150,195 rows as we have in the patients table.

Step 1. Left join the patients table and medevid table on usrds_id

patients_medevid = left_join( 
      patients_filtered %>% select(-c( "cdtype")), 
      medevid_filtered %>% select(-c("randomoffsetindays", "disgrpc", 
"network", "inc_age", 



2-implementation-guidance.md 8/27/2021

16 / 198

                                     "pdis", "sex", "race", 
"masked_died")), 
      by = "usrds_id" 
   ) 

The cdtype column is kept from the medevid table, the other duplicate colums are from the patients
table

Step 2. Populate any missing values for sex and pdis variables in patients with values from medevid
(otherwise keep any duplicate columns from patients)

patients_medevid = patients_medevid %>% 
         mutate(  
            sex = ifelse(is.na(sex), sex_med, sex), 
            pdis = ifelse(is.na(pdis), pdis_med, pdis) 
            ) %>% 
         select(-c(sex_med, pdis_med)) 

6.2.7 Create Transplant Waitlist Features

The transplant data tables contains kidney transplant information from United Network for Organ Sharing

(UNOS), such as information on transplant elibigility and transplant status. These features are created as

transplant waitlist status and the amount of time on the transplant waitlist are indicative of a patients overall

health status. Patients who are on the transplant waitlist are generally much healthier than those who are

not listed.

Steps to running the S1e_patients_medevid_waitlist.R script

This script creates the waitseq_ki, waitseq_kp, tx, tx_waitlist_vars and

patients_medevid_waitlist tables in the Postgres database from the .csv files and the

patients_medevid table.

Input: csv files are produced in script S1a-convertSAStoCSV.R

patients_medevid 
tx.csv 
waitseq_kp.csv 
waitseq_ki.csv  

Output: Postgres tables

waitseq_ki 
waitseq_kp 
tx 
tx_waitlist_vars 
patients_medevid_waitlist 



2-implementation-guidance.md 8/27/2021

17 / 198

patients_medevid_waitlist is the full cohort that should be used from this point forward.

The result of this script is the calculation of the following variables added to the patients_medevid table

which will be saved as the patients_medevid_waitlist table.

days_on_waitlist (number of days in transplant waitlist) 
waitlist_status (active, transplanted, removed, never) 

Step 1. Import the patients table

pat = dbGetQuery(con, 
                      "SELECT * 
                      FROM patients_medevid") 

Step 2. Import the waitseq_ki.csv file.

waitseq_ki = read_csv(file.path(data_dir,"waitseq_ki.csv"), col_types = 
cols( 
    USRDS_ID = col_double(), 
    randomOffsetInDays = col_double(), 
    PROVUSRD = col_double(), 
    PID = col_double(), 
    masked_BEGIN = col_double(), 
    masked_ENDING = col_double() 
  )) 

Step 3. Transform column names to lowercase

names(waitseq_ki) = tolower(names(waitseq_ki)) 

Step 4. Filter on rows with usrds_id in cohort.

waitseq_ki = waitseq_ki %>% 
  filter(usrds_id %in% pat$usrds_id) %>% 

Step 5. Set masked_begin and masked_ending as dates.

  mutate(ws_list_dt = as_date(masked_begin, origin = "1960-01-01"), 
         ws_end_dt = as_date(masked_ending, origin = "1960-01-01"), 
         source = "ki") %>% 



2-implementation-guidance.md 8/27/2021

18 / 198

Step 6. Keep only the following columns:

ws_list_dt = New Waiting Period Starting Date

ws_end_dt = New Waiting Period Ending Date

provusrd = USRDS Assigned Facility ID

source = 'ki'

usrds_id

pid

  select(usrds_id, pid, provusrd, ws_list_dt, ws_end_dt, source) 

Step 7. Save as the waitseq_ki table in Postgres

fields = names(waitseq_ki) 
drop_table_function(con, "waitseq_ki")  
print(str_glue("create waitseq_ki in postgres")) 
dbCreateTable( 
  con, 
  name = "waitseq_ki", 
  fields = waitseq_ki, 
  row.names = NULL 
) 
dbWriteTable( 
  con, 
  name = "waitseq_ki", 
  value = waitseq_ki, 
  row.names = FALSE, 
  append = TRUE 
) 

Step 8. Import waitseq_kp.csv

waitseq_kp = read_csv(file.path(data_dir,"waitseq_kp.csv"), col_types = 
cols( 
  USRDS_ID = col_double(), 
  randomOffsetInDays = col_double(), 
  PROVUSRD = col_double(), 
  PID = col_double(), 
  masked_BEGIN = col_double(), 
  masked_ENDING = col_double() 
)) 
names(waitseq_kp) = tolower(names(waitseq_kp)) 

Step 9. Filter on rows with usrds_id in cohort.



2-implementation-guidance.md 8/27/2021

19 / 198

waitseq_kp = waitseq_kp %>% 
  filter(usrds_id %in% pat$usrds_id) %>% 

Step 10. Set masked_begin and masked_ending as dates and save with new names ws_list_dt and

ws_end_dt.

  mutate(ws_list_dt = as_date(masked_begin, origin = "1960-01-01"), 
         ws_end_dt = as_date(masked_ending, origin = "1960-01-01"), 
         source = "kp") %>% 

Step 11. Keep only the following columns:

ws_list_dt = New Waiting Period Starting Date

ws_end_dt = New Waiting Period Ending Date

provusrd = USRDS Assigned Facility ID

source = 'kp'

usrds_id

pid

  select(usrds_id, pid, provusrd, ws_list_dt, ws_end_dt, source) 

Step 12. Save as the waitseq_kp table in Postgres.

fields = names(waitseq_kp) 
drop_table_function(con, "waitseq_kp")  
print(str_glue("create waitseq_kp in postgres")) 
dbCreateTable( 
  con, 
  name = "waitseq_kp", 
  fields = waitseq_kp, 
  row.names = NULL 
) 
dbWriteTable( 
  con, 
  name = "waitseq_kp", 
  value = waitseq_kp, 
  row.names = FALSE, 
  append = TRUE 
) 

Step 13. Concatenate waitseq_ki and waitseq_kp.



2-implementation-guidance.md 8/27/2021

20 / 198

waitseq = bind_rows(waitseq_ki, waitseq_kp) %>% 
  arrange(usrds_id, ws_list_dt) 

Step 14. Join the new waitseq table to patients.

pat_waitseq = left_join( 
  pat %>% select(usrds_id, masked_first_se, masked_firstdial, 
                 masked_can_first_listing_dt, masked_can_rem_dt, 
                 masked_tx1date, masked_died, can_rem_cd, masked_tx1fail), 
  waitseq, 
  by = "usrds_id") %>% 
  arrange(usrds_id, ws_list_dt) 

Step 15. Label patients as ACTIVE on the waitlist and calculate the days on the transplant waitlist for ACTIVE

patients

Patients are labeled as "active" (those who are considered active on the transplant waitlist) if they meet one

of the following criteria:

�. If list_date is before dial_date and end_date is on or after dial_date

�. Status is ACTIVE on the first day of dialysis

First, check if earliest listing date from waitseq matches first listing date from patients.

first_list = pat_waitseq %>% group_by(usrds_id) %>% 
  arrange(usrds_id, ws_list_dt) %>% 
  distinct(usrds_id, .keep_all = TRUE) %>% 
  ungroup(usrds_id) 

If list_date is before dial_date and end_date is on or after dial_date, OR if list_dt < dial_dt and end_dt

== NA: status is ACTIVE.

pat_waitseq = pat_waitseq %>% 
  mutate(active = ifelse( 
    (ws_list_dt < masked_firstdial & ws_end_dt >= masked_firstdial) | 
(ws_list_dt < masked_firstdial & is.na(ws_end_dt)), 1, 0)) 
 
active = pat_waitseq %>% 
  filter((ws_list_dt < masked_firstdial & ws_end_dt >= masked_firstdial) | 
(ws_list_dt < masked_firstdial & is.na(ws_end_dt))) 

Calculate the days on the transplant waitlist for ACTIVE patients using dial_dt - ws_list_dt.



2-implementation-guidance.md 8/27/2021

21 / 198

active = active %>% 
  mutate( 
    days_on_waitlist = as.double(difftime(masked_firstdial, 
                                          ws_list_dt, 
                                          units = "days")) 
  ) 

Step 16. Remove ACTIVE patients from pat_waitseq

Sort by usrds_id and ws_list_dt and keep the row with the earliest ws_list_dt.

active = active %>% group_by(usrds_id) %>% 
  arrange(usrds_id, ws_list_dt) %>% 
  distinct(usrds_id, .keep_all = TRUE) %>% 
  ungroup(usrds_id) 

Remove active patients from pat_waitseq. Get unique usrds_ids in active dataframe.

active_id = unique(active$usrds_id) 

Filter out rows from pat_waitseq where usrds_id is in the list of active USRDS IDs (active_id).

pat_waitseq_not_act = pat_waitseq %>% 
  filter(!usrds_id %in% active_id) 

Step 17. Import the transplant dataset and process the data

Import tx.csv.

tx = read_csv(file.path(data_dir,"tx.csv"), col_types = cols( 
  DHISP = "c", 
  DSEX = "c", 
  RHISP = "c", 
  RSEX = "c" 
)) 
 
names(tx) = tolower(names(tx)) 

Filter on rows with usrds_id in cohort.

tx = tx %>% 
  filter(usrds_id %in% pat$usrds_id) %>% 



2-implementation-guidance.md 8/27/2021

22 / 198

Transform masked_tdate to a date and save as t_tx_dt.

  mutate(t_tx_dt = as_date(masked_tdate, origin = "1960-01-01"), 

Transform masked_faildate to a date and save as t_fail_dt.

         t_fail_dt = as_date(masked_faildate, origin = "1960-01-01")) %>% 

Keep only the following columns:

t_tx_dt = transplant date

t_fail_dt = Transplant Failure Date

provusrd = USRDS Assigned Facility ID

tottx = Patient Total Number of Transplants

tx_srce = Source of Transplant Record

usrds_id

  select(usrds_id, provusrd, t_tx_dt, t_fail_dt, tottx, tx_srce) %>% 
  arrange(usrds_id, t_tx_dt) 

Step 18. Save as tx in Postgres database

fields = names(tx) 
drop_table_function(con, "tx")  
print(str_glue("create tx in postgres")) 
dbCreateTable( 
  con, 
  name = "tx", 
  fields = tx, 
  row.names = NULL 
) 
dbWriteTable( 
  con, 
  name = "tx", 
  value = tx, 
  row.names = FALSE, 
  append = TRUE 
) 

Step 19. Construct TRANSPLANTED status

Subset rows where LISTING DATE and LIST END DATE are both BEFORE DIAL START DATE Subset rows

with ws_list_dt (listing date) & ws_end_date (list end date) both BEFORE patient masked_firstdial (dialysis



2-implementation-guidance.md 8/27/2021

23 / 198

start date).

list_before_dial = pat_waitseq_not_act %>% 
  filter(ws_list_dt < masked_firstdial & ws_end_dt < masked_firstdial) 

Group by usrds_id, sort by largest to smallest end_date, and keep the maximum end_date for each

usrds_id.

closest_end_dt_to_dial = list_before_dial %>% group_by(usrds_id) %>% 
  arrange(usrds_id, desc(ws_end_dt)) %>% 
  distinct(usrds_id, .keep_all = TRUE) %>% 
  ungroup(usrds_id) 

Left join closest_end_dt_to_dial and tx on usrds_id. This has effect of filtering tx dataset and

keeping rows where usrds_id is in closest_end_dt_to_dial.

If the maximum end date (max_end_dt) is equal to the transplant date (t_tx_dt), then the status is

TRANSPLANTED.

max_end_dt = left_join( 
  closest_end_dt_to_dial %>% select(-pid, -provusrd), 
  tx %>% select(usrds_id, t_tx_dt, t_fail_dt), 
  by = "usrds_id" 
) 
 
max_end_dt = max_end_dt %>% 
  mutate(transplanted = if_else(is.na(t_tx_dt), 0, 
                                if_else(ws_end_dt == t_tx_dt, 1, 0)))  
transplanted = max_end_dt %>% 
  filter(ws_end_dt == t_tx_dt) 

Days on waitlist for TRANSPLANTED patients is t_tx_dt - ws_list_dt.

transplanted = transplanted %>% 
  mutate( 
    days_on_waitlist = as.double(difftime(t_tx_dt, 
                                          ws_list_dt, 
                                          units = "days")) 
  ) 

Step 20. Construct REMOVED status

Remove rows from max_end_dt where usrds_id is in transplanted.

Get the unique usrds_ids in transplanted dataframe.



2-implementation-guidance.md 8/27/2021

24 / 198

transplanted_id = unique(transplanted$usrds_id) 

Filter out rows from max_end_dt where usrds_id is in transplanted_id.

no_act_or_trans = max_end_dt %>% 
  filter(!usrds_id %in% transplanted_id) 

The remaining IDs should have REMOVED status. Check that all rows meet the removed criteria.

num_no_act_tx = nrow(no_act_or_trans %>% 
       filter(ws_end_dt != t_tx_dt | is.na(t_tx_dt))) 

Create a REMOVED column and set removed = 1 if ws_end_dt != t_tx_dt or t_tx_dt = NA.

no_act_or_trans = no_act_or_trans %>% 
  mutate(removed = if_else(ws_end_dt != t_tx_dt | is.na(t_tx_dt), 1, 0)) 
 
removed = no_act_or_trans %>% 
  filter(ws_end_dt != t_tx_dt | is.na(t_tx_dt)) 

Days on waitlist for REMOVED patients is ws_end_dt - ws_list_dt.

removed = removed %>% 
  mutate( 
    days_on_waitlist = as.double(difftime(ws_end_dt, 
                                          ws_list_dt, 
                                          units = "days")) 
  ) 

Note: REMOVED only has duplicates because the tx table has duplicate rows for some patients, but the

waitseq start and end dates are the same for both rows of each usrds_id, so only the first record is kept.

removed = removed %>% group_by(usrds_id) %>% 
  arrange(usrds_id, ws_list_dt) %>% 
  distinct(usrds_id, .keep_all = TRUE) %>% 
  ungroup(usrds_id) 

Get unique usrds_ids in the removed dataframe.



2-implementation-guidance.md 8/27/2021

25 / 198

removed_id = unique(removed$usrds_id) 

Step 21. Merge days_on_waitlist with usrds_id from active, transplanted, and removed.

days = bind_rows(active %>% select(usrds_id, days_on_waitlist), 
                 transplanted %>% select(usrds_id, days_on_waitlist), 
                 removed %>% select(usrds_id, days_on_waitlist)) 
days = days %>% arrange(usrds_id) 

Add ACTIVE patients to the patients table by setting all rows in pat where usrds_id is in active_id to

ACTIVE = 1.

pat = pat %>% 
  mutate(active = if_else(usrds_id %in% active_id, 1, 0)) %>% 
  select(usrds_id, active, masked_first_se, masked_firstdial, 
masked_can_first_listing_dt, 
         masked_can_rem_dt, masked_tx1date, masked_died, can_rem_cd, 
masked_tx1fail) 

Add TRANSPLANTED patients to the patients table by setting all rows in pat where usrds_id is in

transplanted_id to TRANSPLANTED = 1.

pat = pat %>% 
  mutate(transplanted = if_else(usrds_id %in% transplanted_id, 1, 0)) 
 
n_both = nrow(pat %>% filter(active == 1 & transplanted == 1)) 
if (n_both!=0){ 
  print("WARNING! rows exist where active and transplanted are both == 1") 
} 

Add REMOVED patients to the patients table by setting all rows in pat where usrds_id is in removed_id

to REMOVED = 1.

pat = pat %>% 
  mutate(removed = if_else(usrds_id %in% removed_id, 1, 0))  

Step 22. Construct the NEVER status

Set all rows where active, transplanted, and removed are all 0 to NEVER = 1.

pat = pat %>% 
  mutate(never = if_else(active == 0 & transplanted == 0 & removed == 0, 



2-implementation-guidance.md 8/27/2021

26 / 198

1, 0)) 

Calculate the time on the waitlist. Join days_on_waitlist onto patients table.

pat = left_join( 
  pat, 
  days, 
  by = "usrds_id" 
) 

When never is 0, set days_on_waitlist to 0.

pat = pat %>% 
  mutate(days_on_waitlist = replace_na(days_on_waitlist, 0)) 

Step 23. Reshape into long form with one waitlist_status variable.

pat2 = pat %>% 
  mutate(waitlist_status = names( 
    pat %>% select( 
      active, transplanted, removed,never))[ 
        max.col(pat %>% select(active, transplanted, removed, never))]) 

Step 24. Save waitlist variables to Postgres.

tx_waitlist_vars = pat2 %>% 
  select(usrds_id, waitlist_status, days_on_waitlist) %>% 
  arrange(usrds_id) 
 
csv_path = str_glue("{data_dir}tx_waitlist_vars.csv") 
write_csv(tx_waitlist_vars,csv_path) 
drop_table_function(con, "tx_waitlist_vars") 
dbWriteTable( 
  con,  
  name = "tx_waitlist_vars",  
  value = tx_waitlist_vars,  
  row.names = FALSE,  
  append = TRUE) 

Step 25. Merge with patients_medevid and save to Postgres by adding the waitlist and transplant

features to the patient_medevid table.



2-implementation-guidance.md 8/27/2021

27 / 198

patients_med = dbGetQuery(con, 
                 "SELECT * 
                  FROM patients_medevid") 
 
patients_med_waitlist = inner_join( 
  patients_med, 
  tx_waitlist_vars, 
  by="usrds_id" 
) 
fields = names(patients_med_waitlist) 
print(str_glue("create patients_medevid_waitlist in postgres")) 
drop_table_function(con, "patients_medevid_waitlist")  
dbCreateTable( 
  con, 
  name = "patients_medevid_waitlist", 
  fields = patients_med_waitlist, 
  row.names = NULL 
) 
dbWriteTable( 
  con, 
  name = "patients_medevid_waitlist", 
  value = patients_med_waitlist, 
  row.names = FALSE, 
  append = TRUE 
) 

6.2.8 Create Partition Data

Steps for Running S2a_partitionData.R

This script creates the partition_10 table in Postgres which consists of usrds_id and subset and adds

this subset column to the patients_medevid_waitlist table. This subset column is the result of

partitioning the number of rows (1,150,195) into 10 random subsets (numbered 0, 1, ..., 9) and assigning a

patient identifier (usrds_id) to each subset. The purpose of partitioning the data is three-fold:

�. to ensure that there is no leakage between the training and test datasets (correctly stratify the

classes)

�. to manage performance of imputation code (larger datasets require longer run times)

�. to ensure that the machine learning models are reproducible for any users (as opposed to setting the

seed and using a library like caret to partition)

Note: Each subset is approximately 10% because it is constructed completely at random.

Input: patients_medevid_waitlist table from Postgres

Output: partition_10 table in Postgres

Step 1. Define function to create num_partitions (10) indexed in a column named subset and save to

Postgres as partition_10



2-implementation-guidance.md 8/27/2021

28 / 198

partition_data <- function(con, 
                           usrds_id, 
                           num_partitions,  
                           data_tablename,  
                           seed_value) { 
 
  set.seed(2539) 
 
  randvalue = runif( 
    length(usrds_id),  
    min = 0,  
    max = num_partitions 
    ) 
   
  universe = cbind( 
    usrds_id,  
    floor(randvalue)) %>%  
    as.data.frame() 
   
  names(universe) = c("usrds_id", "subset") 
   
  tblname = str_glue("partition_{num_partitions}") 
  drop_table_function(con, tblname) 
  dbWriteTable( 
    con, 
    tblname, 
    universe, 
    append = FALSE, 
    row.names = FALSE 
    ) 
} 

Step 2. Import the usrds_ids from Postgres.

data_tbl = "patients_medevid_waitlist" 
 
usrds_id = dbGetQuery( 
  con, 
  str_glue( 
    " 
    SELECT usrds_id  
    FROM {data_tbl} 
    ORDER BY usrds_id 
    ")) 
usrds_id = usrds_id$usrds_id 

Call the function defined above to create the 10 partitions.



2-implementation-guidance.md 8/27/2021

29 / 198

partition_data( 
                con,  
                usrds_id, 
                num_partitions = 10, 
                data_tablename = data_tbl 
              ) 

6.2.9 Join patients_medevid_waitlist Table to the Partition Index

Steps to running the S2b_join_partition_data.R script

This script joins the patients_medevid_waitlist table to the partition index.

Input: patients_medevid_waitlist

Output: patients_medevid_waitlist

Step 1. Define a function to import and alter the patients_medevid_waitlist table by adding the

subset column, and save to Postgres.

join_data_partitions <- function(con,  
                                 
data_tablename="patients_medevid_waitlist",  
                                 num_partitions=10){ 
   
  dbSendStatement(con, str_glue( 
    " 
     ALTER TABLE {data_tablename}  
     ADD subset integer 
     "), n = -1) 
   
  dbSendStatement( 
    con,  
    str_glue( 
      " 
        UPDATE {data_tablename} d 
        SET subset = p.subset 
        FROM partition_{num_partitions} p 
        WHERE d.usrds_id = p.usrds_id 
        "), n = -1) 
} 

Step 2. Execute the function

data_tbl = "patients_medevid_waitlist" 
 
join_data_partitions( 
  con, 
  data_tablename = data_tbl, 



2-implementation-guidance.md 8/27/2021

30 / 198

  num_partitions = 10 
) 

6.2.9.1 Calculate Demographic Subtotals Per Partition

Steps to running the S2c_calculate_partition_totals.R script

This script creates a table with counts of select categories for each data partition to ensure that the

partitions are representative of the entire dataset.

Input: patients_medevid_waitlist

Output: ./partition_totals_rev_method.csv

Step 1. Pull the data from the database and count the number of patients per partition for the following

variables:

sex = male

race = white

number of missing hemoglobin values

number of missing serum creatine values

number of missing albumin values

number of patients who died in the first 90 days (outcome variable)

df = dbGetQuery( 
  con, 
  " 
  SELECT * 
  FROM patients_medevid_waitlist 
  " 
) 
 
subsets_totals = df %>% 
  select(subset) %>% 
  group_by(subset) %>% 
  count() 
 
subsets_totals = rename(subsets_totals, c("total_pts"=n)) 
 
subsets_male = df %>%  
  filter(sex==1) %>% 
  select(sex, subset) %>%  
  group_by(sex, subset) %>%  
  count() 
subsets_male <- rename(subsets_male, c("total_males"=n)) 
 
subsets_white = df %>% 
  filter(race==1) %>% 
  select(subset, race) %>% 
  group_by(subset,race) %>% 
  count() 



2-implementation-guidance.md 8/27/2021

31 / 198

subsets_white <- rename(subsets_white, c("total_white"=n)) 
 
subsets_heme = df %>% 
  filter(is.na(heglb)==TRUE) %>% 
  select(subset,heglb) %>% 
  group_by(heglb, subset) %>% 
  count() 
subsets_heme <- rename(subsets_heme, c("total_heme_na"=n)) 
 
subsets_sercr = df %>% 
  filter(is.na(sercr)==TRUE) %>% 
  select(subset,sercr) %>% 
  group_by(sercr, subset) %>% 
  count() 
subsets_sercr <- rename(subsets_sercr, c("total_sercr_na"=n)) 
 
subsets_album = df %>% 
  filter(is.na(album)==TRUE) %>% 
  select(subset,album) %>% 
  group_by(album, subset) %>% 
  count()  
subsets_album <- rename(subsets_album, c("total_album_na"=n)) 
 
subsets_outcome = df %>% 
  filter(died_in_90==1) %>% 
  select(subset,died_in_90) %>% 
  group_by(died_in_90,subset) %>% 
  count() 
subsets_outcome <- rename(subsets_outcome, c("total_died"=n)) 
 
dd =   
  left_join( 
    subsets_totals, 
    subsets_outcome, 
    by='subset' 
) 
 
dd = left_join( 
  dd, 
  subsets_male, 
  by='subset' 
) 
 
dd = left_join( 
  dd, 
  subsets_white, 
  by='subset' 
) 
 
dd = left_join(  dd, 
  subsets_heme, 
  by='subset' 
) 
 



2-implementation-guidance.md 8/27/2021

32 / 198

dd = left_join(  dd, 
  subsets_album, 
  by='subset' 
) 
 
dd = left_join(  dd, 
  subsets_sercr, 
  by='subset' 
) 
write_csv(dd, "partition_totals_rev_method.csv") 

Table: Counts of select categories for each data partition

Sub-

set

Number

of

Males

Number

of Race

Group

(White)

Number of

Missing

Hemoglobin

Values

Number of

Missing

Serum

Creatinine

Values

Number of

Missing

Albumin

Values

Total

Number

of

Patients

Number

of

Patients

who

Died

0 65,981 76,535 17,248 2,055 35,925 114,824 8,529

1 66,131 76,864 17,108 2,051 35,129 115,050 8,773

2 66,137 76,773 17,240 2,043 35,428 115,044 8,669

3 66,031 76,846 17,406 1,937 35,100 115,027 8,426

4 66,282 76,788 16,971 1,917 34,933 114,802 8,549

5 66,042 76,652 17,285 2,008 35,138 114,936 8,671

6 66,579 77,002 17,266 1,976 35,219 115,207 8,728

7 66,332 77,221 17,266 2,035 35,019 115,557 8,695

8 66,982 76,605 17,027 2,014 34,797 114,925 8,478

9 66,033 76,751 16,847 1,936 34,973 114,823 8,565

6.2.10 Get Pre-ESRD Claims Data

The pre-ESRD claims tables in USRDS contains Medicare pre-ESRD Parts A and B, which are used to

construct features for health care received prior to ESRD diagnosis.

Steps for running S3a_esrd_claims.R

This script extracts, filters, and stores the pre-ESRD claims tables from 2011-2017 for the cohort. This

script uses the create_claim_table.R functions detailed in the next section.

Input: csv files are produced in script S1a-convertSAStoCSV.R

create_claim_table.R

pre_esrd_ip_claim_variables.R

pre_esrd_hs_claim_variables.R



2-implementation-guidance.md 8/27/2021

33 / 198

pre_esrd_hh_claim_variables.R

pre_esrd_op_claim_variables.R

pre_esrd_sn_claim_variables.R

Output: The Postgres tables

preesrd5y_ip_clm_inc 
preesrd5y_hs_clm_inc 
preesrd5y_hh_clm_inc 
preesrd5y_op_clm_inc 
preesrd5y_sn_clm_inc 

Step 1. Import the input file names and column types from the pre_esrd_{xx}_claim_variables.R scripts

The types of claims include:

Inpatient (IP)

Outpatient (OP)

Home health (HH)

Hospice (HS)

Skilled Nursing Unit (SN)

source('CreateDataSet/create_claim_table.R') 
 
claim_types = c( 
  "ip", 
  "hs", 
  "hh", 
  "op", 
  "sn" 
) 

Step 2. Import and run the create_claim_table function for each claim type for years 2011-2017.

for (typ in claim_types) { 
  source(str_glue("CreateDataSet/pre_esrd_{typ}_claim_variables.R")) 
   
  create_claim_table( 
    data_dir,  
    con,  
    filenames_esrd,  
    fieldnames_esrd,  
    columns_esrd,  
    columns_esrd_2015,  
    table_name_pt='patients_medevid_waitlist' 
    ) 
} 



2-implementation-guidance.md 8/27/2021

34 / 198

Points to consider

Pre-ESRD claims data includes clinical as well as administrative information. Clinicians should be engaged

to identify the variables in the claims data with predictive value.

6.2.11 Create Claims Tables

Steps to running the create_claim_table.R script

This script contains the functions used in S3a_esrd_claims.R to create the pre-ESRD claims tables. The

schema for the tables changes from year to year. For example, there is no cdtype field prior to 2014, since

all diagnosis codes were ICD9 prior to 2014. The script handles these year-to-year changes in schema.

Step 1. Define create_claim_table function

create_claim_table <- function( 
  data_dir,  
  con,  
  filenames,  
  fieldnames,  
  column_type, 
  column_type_2015, 
  table_name_pt) { 
  # send information to insert each year of claims data into the same 
Postgres table 
   
  fieldnames = tolower(fieldnames) 
  for (filename in filenames) { 
    incident_year = 
      substr(filename, str_length(filename) - 3, str_length(filename)) 
     
    if (incident_year < 2015) { 
      # claims prior to 2015 are all icd9, so we set cdtype to I for those 
years 
      csvfile = read_csv(file.path(data_dir, str_glue("{filename}.csv")), 
col_types = column_type_2015) 
      csvfile = csvfile %>%   
        mutate(cdtype =  "I") 
    } 
    else { 
      csvfile = read_csv(file.path(data_dir, str_glue("{filename}.csv")), 
col_types = column_type) 
    } 
     
    tblname = str_remove(filename, incident_year) 
    names(csvfile) = tolower(names(csvfile)) 
    fields = names(csvfile) 
     
    patients = dbGetQuery( 
      con, 
      str_glue( 



2-implementation-guidance.md 8/27/2021

35 / 198

        "SELECT usrds_id 
            FROM {table_name_pt}") 
    ) 
     
    df = patients %>% 
      inner_join( 
        csvfile,  
        by = "usrds_id") %>% 
      mutate( 
        incident_year = incident_year) 
     
    df$pdgns_cd = df$pdgns_cd %>% 
          trimws() %>% 
          str_pad(., 
                  width = 7, 
                  side = "right", 
                  pad = "0") 
     
    if (grepl('_ip_', tblname)){ 
      df = createIP_CLM(df, incident_year) 
    }  
    else { 
      df <- df %>% 
        filter(!is.na(masked_clm_from) & (masked_clm_from != "")) 
  } 
  # Append every set, except '2012' which will be the first table to 
import.  
  # this is b/c 2012 has the format that we want to use to create the 
table  
  # and append the other years since the format changes between 2011 and 
2012-2017 
     
    if (incident_year==2012){ 
      drop_table_function(con, tblname) 
      print(str_glue("creating {tblname} claims using {incident_year}=
{nrow(df)} 
                      patients={nrow(df %>% distinct(usrds_id, 
keep_all=FALSE))}")) 
       
      dbWriteTable( 
        con,  
        tblname, 
        df[, fieldnames],  
        append = FALSE,  
        row.names = FALSE) 
    }  
    else { 
      print(str_glue("adding {incident_year} to {tblname}={nrow(df)} 
                     patients={nrow(df %>% distinct(usrds_id, 
keep_all=FALSE))}")) 
      dbWriteTable( 
        con,  
        tblname, 
        df[, fieldnames], 



2-implementation-guidance.md 8/27/2021

36 / 198

        append = TRUE,  
        row.names = FALSE) 
    } 
  } 
} 

Step 2. Create a separate function createIP_CLM to handle the inpatient (IP) claims differently. This filters

out rows with missing data.

createIP_CLM = function(df, incident_year) { 
  # filtering for table named "preesrd5y_ip_clm" 
  print(str_glue("filtering IP claims {incident_year}")) 
   
  df = df %>% 
    filter( 
      !is.na(masked_clm_from) &  
      (masked_clm_from != "") & 
      !is.na(drg_cd) &  
      (drg_cd != "") 
      )  
  return(df) 
} 

6.2.12 Map Diagnosis Codes (drg_cd) to Primary Diagnosis Codes
(pdgns_cd)

More information about the primary diagnosis codes and aggregate categories can be found in Section

6.2.14 Diagnosis Groupings.

Steps to running the S3b_mapDrgCdToPdgnsCd.R script

Prior to 2011, there is no pdgns_cd (primary diagnosis code) in the USRDS pre-ESRD data. This is an issue,

because we need the pdgns_cd in order to map a claim to one of the 12 aggregate categories. This script

addresses the issue by mapping the drg_cd (which is available prior to 2011) to a pdgns_cd. The mapping

is not one-to-one. This script therefore constructs a probability distribution for the mapping, and the

pdgns_cd is subsequently constructed based on this probability distribution.

Input: Postgres table

preesrd5y_ip_clm_inc 

Output: Postgres table

drg_cd_mapping 



2-implementation-guidance.md 8/27/2021

37 / 198

The script S3a-esrd_claims.R must be run in order to generate the data used by this script. The in-

patient claims have both drg_cd and pdgns_cd. These are used as the source data for mapping drg_cd to

pdgns_cd.

Step 1. Import data from the preesrd5y_ip_clm_inc table

res = dbGetQuery( 
  con, 
  "WITH pre_drg_pdgn AS ( 
                        SELECT drg_cd, pdgns_cd, COUNT(*) AS nmbr  
                        FROM preesrd5y_ip_clm_inc 
                        WHERE cdtype='I'  
                        GROUP BY drg_cd, pdgns_cd), 
          drg_cd_tbl AS ( 
                        SELECT drg_cd, pdgns_cd, nmbr,  
                        row_number() OVER (PARTITION BY drg_cd  
                                          ORDER BY nmbr DESC)  
                        FROM pre_drg_pdgn 
                        ) 
  SELECT a.drg_cd, a.pdgns_cd, a.nmbr, a.row_number, SUM(b.nmbr) AS cum  
  FROM drg_cd_tbl a 
    INNER JOIN drg_cd_tbl b  
    ON a.drg_cd=b.drg_cd  
    AND a.row_number<=b.row_number  
    GROUP BY a.drg_cd, a.pdgns_cd, a.nmbr, a.row_number  
    ORDER BY a.drg_cd, a.row_number" 
) 

Step 2. Aggregate table by drg_cd

bydrgcd = res %>%  
  group_by(drg_cd) %>% 
  dplyr::summarise( 
    total = sum(as.numeric(nmbr))) 
res = res %>%  
  inner_join( 
    bydrgcd, 
    by = "drg_cd") 
res = res %>%  
  mutate( 
        cum0 = as.numeric(cum - nmbr), 
        cum = as.numeric(cum), 
        lb = cum0 / total, 
        ub = cum / total 
) 

Step 3. Select the columns to save.



2-implementation-guidance.md 8/27/2021

38 / 198

drg_cd_mapping = res %>%  
  select( 
          drg_cd,  
          pdgns_cd, 
          lb,  
          ub) 

Step 4. Save to Postgres as drg_cd_mapping

drg_tblname = "drg_cd_mapping" 
drop_table_function(con, drg_tblname) 
dbWriteTable(con, 
             drg_tblname, 
             drg_cd_mapping, 
             append = F, 
             row.names = FALSE) 

6.2.13 Get pre-2011 pre-ESRD Claims Data

Steps to running the S3c_esrd_claims_pre_2011.R script

Before 2011, pre-ESRD claims are stored in the files inc2008.csv, inc2009.csv, inc2010.csv. The files are

organized differently from the other pre-ESRD files: the type of claim is not part of the file name (instead, it

is identified in the file's contents in a field called "hcfasaf"); and the contents of the file can differ from year

to year. Also, the pdgns_cd is not available prior to 2012. This script constructs a pdgns_cd from the

drg_cd which is available prior to 2011.

Input: .csv files are produced in script S1a-convertSAStoCSV.R

pre_esrd_pre2011_claim_variables.R

inc2008.csv 
inc2009.csv 
inc2010.csv 
drg_cd_mapping 

Output: Rows of pre-2011 claims for the cohort added to the following Postgres tables

preesrd5y_ip_clm_inc 
preesrd5y_hh_clm_inc 
preesrd5y_hs_clm_inc 
preesrd5y_op_clm_inc 
preesrd5y_sn_clm_inc 

File names and column types are defined in pre_esrd_pre2011_claim_variables.R



2-implementation-guidance.md 8/27/2021

39 / 198

source('CreateDataSet/pre_esrd_pre2011_claim_variables.R') 

Step 1. Import the pre-2011 claims and filter on usrds_ids in the cohort and features in the post-2011

claims.

Set cdtype = "I" to indicate ICD-9

Set any missing drg_cd=000.

create_pre_2011 <- function( 
    data_dir,  
    filename,  
    tblname, 
    append_flag, 
    table_name_pt,  
    newIn2010,  
    column_types){ 
     
    inc20xx = read_csv(file.path(data_dir, str_glue("{filename}.csv")), 
col_types=column_types) 
    incident_year = 
        substr(filename, str_length(filename) - 3, str_length(filename)) 
    names(inc20xx) = tolower(names(inc20xx)) 
     
    patients = dbGetQuery( 
        con, 
        str_glue( 
            "SELECT usrds_id 
            FROM {table_name_pt}") 
    ) 
     
    # filter on ids from the patient table 
    inc20xx = inc20xx %>%  
        filter( 
            usrds_id %in% patients$usrds_id) %>% 
        mutate( 
            incident_year = incident_year, 
            cdtype = "I", 
            drg_cd = ifelse( 
                    is.na(drg_cd), "000", drg_cd), 
            drg_cd = ifelse( 
                    drg_cd == "", "000", drg_cd)) %>% 
        mutate( 
            drg_cd = as.numeric(drg_cd)) 
     
    sortednm = names(inc20xx) %>% sort() 
    inc20xx = inc20xx[, sortednm] 
     
    if (append_flag==FALSE){ 
        inc20xx[, newIn2010] = NA 
        drop_table_function(con, tblname) 



2-implementation-guidance.md 8/27/2021

40 / 198

    } 
    print(nrow(inc20xx)) 
    dbWriteTable( 
        con, 
        tblname,  
        inc20xx,  
        append = append_flag, 
        row.names = FALSE) 
} 

Step 2: For each claim type (home health - hh, hospice - hs, inpatient - ip, skilled nursing unit - sn,

outpatient - op)

Generate a uniform random number for each record in pre2011 claims, and look up pdgns_cd from

drg_cd_mapping based on this random number, which will produce a pdgns_cd reflecting the

underlying joint distribution of (drg_cd, pdgns_cd) in the data

get_claim_type_x <- function(claim_type, table_nm) { 
    print(str_glue("get {claim_type}")) 
    df = dbGetQuery( 
        con, 
        str_glue( 
            " 
            SELECT *  
            FROM {table_nm}  
            WHERE hcfasaf='{claim_type}' 
            ")) 
    return(df) 
} 
get_distribution <- function(df){ 
    # Generate a uniform rv for each record in df, and look up pdgns_cd 
from drg_cd_mapping 
    # based on this rv, which will produce a pdgns_cd reflecting the 
underlying 
    # joint distribution of (drg_cd,pdgns_cd) in the data 
     
    print("get distribution of drg_cd, pdgns_cd") 
    set.seed(597) 
     
    df$rv = runif( 
        dim(df)[1] 
        ) 
    temptablename = "temp_df" 
     
    drop_table_function(con, temptablename) 
     
    dbWriteTable( 
        con,  
        temptablename, 
        df, 
        temporary = TRUE 



2-implementation-guidance.md 8/27/2021

41 / 198

    ) 
    dg = dbGetQuery( 
        con, 
        str_glue( 
            " 
            SELECT a.*, b.pdgns_cd  
            FROM {temptablename} a  
                LEFT JOIN drg_cd_mapping b  
                ON a.drg_cd = b.drg_cd  
                AND a.rv <= b.ub  
                AND a.rv > b.lb 
            ")) 
    return(dg) 
} 

Step 3: Insert these rows into the main Postgres table for this claim type.

insert_claim_rows <- function(claim_type, pre2011_data) { 
    #Get the field names to be inserted into the pre-esrd data,  
    # in the correct order 
    print(str_glue("intert pre 2011 {claim_type} rows into table 
{nrow(pre2011_data)}")) 
    main_fieldnames = names( 
        dbGetQuery( 
            con,  
            str_glue( 
                " 
                SELECT *  
                FROM preesrd5y_{claim_type}_clm_inc 
                LIMIT 10 
                ") 
            ) 
    ) 
     
    #Set fields in main claims fieldnames that do not appear in the 
pre2011 data = nan 
    pre2011_data[, setdiff(main_fieldnames, names(pre2011_data))] = NA 
    
    # Include only fields also in main_fieldnames, in the proper order 
    pre2011_data = pre2011_data[, main_fieldnames] 
     
    # append pre2011 rows to the main claims table 
    main_tblname = str_glue("preesrd5y_{claim_type}_clm_inc") 
    dbWriteTable( 
        con,  
        main_tblname,  
        pre2011_data,  
        append = TRUE,  
        row.names = FALSE) 
    } 



2-implementation-guidance.md 8/27/2021

42 / 198

Step 4. Define the wrapper function to separate into each year and claim type and save to Postgres tables.

source_pre_2011 <- function(data_dir, tblname, column_types) { 
 
    newIn2010 = c( 
        "dpoadmin", 
        "dpodose", 
        "hgb", 
        "dpocash", 
        "attending_phys", 
        "operating_phys", 
        "other_phys" 
    ) 
 
    create_pre_2011(data_dir,  
                    "inc2010",  
                    tblname,  
                    append_flag=FALSE,  
                    table_name_pt = "patients_medevid_waitlist", 
                    newIn2010,  
                    column_types) 
     
    create_pre_2011(data_dir,  
                    "inc2009",  
                    tblname,  
                    append_flag=TRUE,  
                    table_name_pt = "patients_medevid_waitlist", 
                    newIn2010,  
                    column_types) 
     
    create_pre_2011(data_dir, 
                    "inc2008", 
                    tblname, 
                    append_flag=TRUE,  
                    table_name_pt = "patients_medevid_waitlist", 
                    newIn2010,  
                    column_types) 
 
    ########BEGIN HOME HEALTH####### 
    df = get_claim_type_x("H",tblname) 
    dg = get_distribution(df) 
    insert_claim_rows("hh", dg) 
    rm(df,dg) 
     
    ####BEGIN HOSPICE########## 
    df = get_claim_type_x("S", tblname) 
    dg = get_distribution(df) 
    insert_claim_rows("hs", dg) 
    rm(df,dg) 
     
    ####BEGIN INPATIENT####### 
    df = get_claim_type_x("I", tblname) 
    dg = get_distribution(df) 



2-implementation-guidance.md 8/27/2021

43 / 198

    insert_claim_rows("ip", dg) 
    rm(df,dg) 
     
    ###BEGIN SKILLED NURSING#### 
    df = get_claim_type_x("N", tblname) 
    dg = get_distribution(df) 
    insert_claim_rows("sn", dg) 
    rm(df,dg) 
     
    ####BEGIN OUTPATIENT#### 
    df = get_claim_type_x("O", tblname) 
 
    # Step 2: Generate a uniform rv for each record in df, and look up 
pdgns_cd from drg_cd_mapping 
    # based on this rv, which will produce a pdgns_cd reflecting the 
underlying 
    # joint distribution of (drg_cd, pdgns_cd) in the data 
    set.seed(597) 
    df$rv = runif( 
        dim(df)[1] 
        ) 
    temptablename = "temp_df" 
    drop_table_function(con, temptablename) 
    dbWriteTable( 
        con, 
        temptablename,  
        df,  
        temporary = TRUE 
        ) 
 
    make_query <- function(dg_vals, temptablename){ 
        dg = str_glue( 
                "WITH w as ( 
                            SELECT *  
                            FROM {temptablename} 
                            WHERE MOD(CAST(usrds_id AS NUMERIC),10) IN 
({dg_vals}) 
                            ) 
                SELECT a.*, b.pdgns_cd  
                FROM w a  
                LEFT JOIN drg_cd_mapping b 
                    ON a.drg_cd = b.drg_cd  
                    AND a.rv <= b.ub  
                    AND a.rv > b.lb" 
        ) 
        return(dg) 
    } 
    dg_1 = dbGetQuery(con, make_query("0,1", temptablename)) 
     
    dg_2 = dbGetQuery(con, make_query("2,3", temptablename)) 
     
    dg_3 = dbGetQuery(con, make_query("4,5", temptablename)) 
                       
    dg_4 = dbGetQuery(con, make_query("6,7", temptablename)) 



2-implementation-guidance.md 8/27/2021

44 / 198

 
    dg_5 = dbGetQuery(con, make_query("8,9", temptablename)) 
 
    dg = rbind(dg_1, dg_2) 
    dg = dg %>%  
        rbind(dg_3) %>%  
        rbind(dg_4) %>%  
        rbind(dg_5) 
 
    #step 3 append rows to main table 
    insert_claim_rows("op", dg) 
} 

Step 5. Execute all functions defined above

source_pre_2011(data_dir,"pre_esrd_2011", columns_esrd_2015) 

6.2.14 Diagnosis Groupings

There are several thousand primary diagnosis codes in pre-ESRD claims data, which need to be

meaningfully categorized in order to create useful features. 12 major disease groups that were determined

by the clinicians on the project include: diabetes, hypertension, heart failure, cardiovascular arterial disease,

cerebrovascular disease, peripheral arterial disease, pneumonia, kidney failure, malignant neoplasm,

smoking, alcohol dependence, and drug dependence.

Steps for running S3d_dxCodeGrouping.R

This script maps each valule in pdgns_cd column in the pre-ESRD data to one of 12 aggregated diagnosis

groupings, and stores the mapping in the dxmap Postgres table. Two sources of input are used for the

groupings: CCS (Clinical Classification System) and UCSF physician expertise.

Input:

icd9_ccs_codes.R (for CCS groupings)

icd10_ccs_codes.R (for CCS groupings)

icd9_dx_2014.txt (for the icd9 pdgsn_cd)

icd10_dx_codes.txt (for the icd10 pdgsn_cd)

dx_mappings_ucsf.csv (for UCSF-advised categorizations of diagnosis codes)

Output:

dxmap 

Step 1. Define functions



2-implementation-guidance.md 8/27/2021

45 / 198

read_icd9 <- function(directory, filename) { 
  #READ IN ICD9 SOURCE DATA 
  lines = readLines(file.path(directory,filename)) 
  lines = 
    iconv(lines[2:length(lines)], 
          from = "latin1", 
          to = "ASCII", 
          sub = "" 
          )   
   
  #Convert utf-8 to ASCII and remove special characters like umlauts and 
accents 
  pdgns_cd = substr(lines, 1, 6) %>%  
              trimws() %>%  
              str_pad(., 
                      width = 7, 
                      side = "right", 
                      pad = "0" 
                      ) 
  description = substr(lines, 7, 130) 
   
  df9 = as.data.frame(cbind(pdgns_cd, description)) 
  df9$cdtype = "I" 
  return(df9) 
} 
read_icd10 <- function(directory, filename){ 
  lines = readLines(file.path(directory, filename)) 
  lines <- 
    iconv(lines[2:length(lines)], 
          from = "latin1", 
          to = "ASCII", 
          sub = "" 
          )   
  pdgns_cd = substr(lines, 1, 7) %>% 
              trimws() %>%  
              str_pad(., 
                      width = 7, 
                      side = "right", 
                      pad = "0" 
                      ) 
  description = substr(lines, 11, 130) 
  df10 = as.data.frame(cbind(pdgns_cd, description), stringsAsFactors = F) 
  df10 = df10 %>% filter(pdgns_cd != '0000000') 
  #There may be multiple entries with the same pdgns_cd for icd10, so 
choose one 
  df10 = sqldf( 
              " 
              SELECT pdgns_cd, MAX(description) AS description  
              FROM df10  
              GROUP BY pdgns_cd" 
              ) 
  df10$cdtype = "D" 
  return(df10) 



2-implementation-guidance.md 8/27/2021

46 / 198

} 
map_pdgns = function(df9, df10){ 
  # join icd9 and icd10 
  df <- as.data.frame(rbind(df9, df10)) %>%  
    mutate_at( 
      vars('cdtype', 'pdgns_cd', 'description'), 
      as.character 
    ) 
  df = df %>%  
    mutate( 
      dx_neo = as.integer( 
        grepl("malignant neoplasm", tolower(df$description)) & 
          grepl("family history", tolower(df$description)) 
      ), 
      # dx_poi=as.integer(grepl("poisoning",tolower(df$description))), 
      dx_smo = as.integer(( 
        cdtype == 'D' & pdgns_cd %in% smo_10 
      ) |( 
        cdtype == 'I' & pdgns_cd %in% smo_9) 
      ), 
      dx_alc = as.integer(( 
        cdtype == 'D' & pdgns_cd %in% alc_10 
      ) | ( 
        cdtype == 'I' & pdgns_cd %in% alc_9) 
      ), 
      dx_drg = as.integer(( 
        cdtype == 'D' & pdgns_cd %in% drg_10 
      ) | ( 
        cdtype == 'I' & pdgns_cd %in% drg_9) 
      ), 
      dx_pne = as.integer(( 
        cdtype == 'D' & pdgns_cd %in% pne_10 
      ) | ( 
        cdtype == 'I' & pdgns_cd %in% pne_9) 
      ), 
      dx_kid = as.integer(( 
        cdtype == 'D' & pdgns_cd %in% kid_10 
      ) | ( 
        cdtype == 'I' & pdgns_cd %in% kid_9) 
      ) 
    ) 
  return(df) 
} 
getComorbids <- function(directory, filename, df, colname, prefix = 'dx_') 
{ 
  ucsf_mappings = read.csv(file.path(directory, filename), 
stringsAsFactors = FALSE) 
  dg = sqldf( 
    "SELECT df.*, b.label  
    FROM df   
    LEFT JOIN ucsf_mappings b  
    ON df.pdgns_cd>=b.lb  
    AND df.pdgns_cd<=b.ub", 
    method = "raw" 



2-implementation-guidance.md 8/27/2021

47 / 198

  ) 
  values = unique(dg[, colname]) %>% setdiff(NA) 
  for (v in values) { 
    dg[, paste0(prefix, v)] = (as.integer(dg[, colname] == v)) 
    dg[, paste0(prefix, v)] = replace_na(dg[, paste0(prefix, v)], 0) 
  } 
  dg$label = NULL 
  return(dg) 
} 

Step 2. Execute Functions

df9 = read_icd9(source_dir, "icd9_dx_2014.txt") 
df10 = read_icd9(source_dir, "icd10_dx_codes.txt") 
mapped9_10 = map_pdgns(df9, df10) 
dh = getComorbids(source_dir, "dx_mappings_ucsf.csv", df=mapped9_10, 
colname = "label") 

Step 3. Save to Postgres database as dxmap

drop_table_function(con, "dxmap") 
tblname = "dxmap" 
dbWriteTable( 
  con, 
  tblname, 
  dh, 
  append = FALSE, 
  row.names = FALSE 
  ) 

Points to consider

The primary diagnosis codes in the pre-ESRD claims should be converted with clinician s̓ input into relevant

disease groupings that can be used to create features with predictive value. It is difficult find a one-size-

fits-all method for mapping diagnosis codes to meaningful categories as the categories are highly

dependent on the use case. Future researchers may want to consider alternative disease groupings that are

informed by clinicians and other health-care researchers.

6.2.15 Aggregate Pre-ESRD Claims Data

Steps for running S4a_pre_esrd_full.R

USRDS data have multiple pre-ESRD claims per patient. This script aggregates the data for each patient

through the following steps:

�. Merge the pre-ESRD claims tables

�. Construct counts of claims grouped by type of claim and diagnosis code



2-implementation-guidance.md 8/27/2021

48 / 198

�. Create one record per patient, with all pre-ESRD summary statistics aggregated for each patient

�. Create binary variables to indicate the presence or absence of pre-ESRD claims and of each type of

claim (IP, HH, HS, OP, SN)

The record includes total number of claims and total length of stay, grouped by:

�. Type of claim (IP, HH, HS, OP, SN) and

�. The aggregated diagnosis grouping.

Input:

setfieldtypes.R

preesrd5y_ip_clm_inc 
preesrd5y_hs_clm_inc 
preesrd5y_hh_clm_inc 
preesrd5y_op_clm_inc 
preesrd5y_sn_clm_inc 
patients_medevid_waitlist 

Output:

preesrdfeatures 

Table: Number of unique patients with each type of Medicare Pre-ESRD claims

Inpatient

(IP)

Outpatient

(OP)

Skilled Nursing

Unit (SN)

Home Health

(HH)

Hospice

(HS)

Number of Unique

Patients
553,704 514,926 140,417 224,272 12,482

Total Number of

Claims
2,496,683 15,222,280 592,970 939,751 50,200

Step 1. Define functions for SQL queries to get claim information for 3 types of aggregations and join to the

dxmap table.

prepareQuery = function(dxcols, tablename, qryAggType = 1, testMode = 0) { 
   
  qry_pt1=paste0("b.", dxcols$column_name, collapse=",") 
   
  if (qryAggType == 1) { 
    vec1 = paste0("SUM(stay*", dxcols$column_name, ")") 
    vec2 = paste0(" AS stay", substr(dxcols$column_name, 3, 6)) 
    qry_pt5 = paste0(vec1, vec2, collapse = ", ") 
 
  } else if (qryAggType == 2) { 



2-implementation-guidance.md 8/27/2021

49 / 198

    vec1 = paste0("SUM(", dxcols$column_name, ")") 
    vec2 = paste0(" AS clms", substr(dxcols$column_name, 3, 6)) 
    qry_pt5 = paste0(vec1, vec2, collapse = ", ") 
 
  }  else if (qryAggType == 3) { 
    vec1 = paste0("MAX(", dxcols$column_name, ")") 
    vec2 = paste0(" AS has", substr(dxcols$column_name, 3, 6)) 
    qry_pt5 = paste0(vec1, vec2, collapse = ", ") 
  } 
   
    qry_main = str_glue("WITH w AS ( 
                                  SELECT a.usrds_id, 
                                    a.pdgns_cd,  
                                    a.masked_clm_thru-a.masked_clm_from AS 
stay, 
                                    a.cdtype,  
                                    a.hgb,  
                                    a.hcrit,  
                                    {qry_pt1} 
                                   FROM {tablename} a  
                                   LEFT JOIN dxmap b  
                                    ON a.cdtype=b.cdtype  
                                    AND a.pdgns_cd=b.pdgns_cd 
                                )  
                      SELECT usrds_id, {qry_pt5} 
                      FROM w 
                      GROUP BY usrds_id" 
                      ) 
  return(qry_main) 
} 

Step 2. Get column names

dxcols = names(dbGetQuery( 
  con,  
  " 
  SELECT *  
  FROM dxmap  
  LIMIT 5 
  ")) 
 
dxcols = dxcols[4:length(dxcols)] %>% as.data.frame() 
names(dxcols) = "column_name" 

Step 3. Send a SQL query for each type of claim and aggregation.

ip1 = dbGetQuery(con,prepareQuery( 
                                 dxcols, 
                                 "preesrd5y_ip_clm_inc", 



2-implementation-guidance.md 8/27/2021

50 / 198

                                 qryAggType = 1, 
                                 testMode = 0 
                 )) 
 
ip2 = dbGetQuery(con,prepareQuery( 
                                 dxcols, 
                                 "preesrd5y_ip_clm_inc", 
                                 qryAggType = 2, 
                                 testMode = 0 
                 )) 
 
ip3 = dbGetQuery(con,prepareQuery( 
                                 dxcols, 
                                 "preesrd5y_ip_clm_inc", 
                                 qryAggType = 3, 
                                 testMode = 0 
                 )) 
 
op1 = dbGetQuery(con,prepareQuery( 
                                 dxcols, 
                                 "preesrd5y_op_clm_inc", 
                                 qryAggType = 1, 
                                 testMode = 0 
                 )) 
 
op2 = dbGetQuery(con,prepareQuery( 
                                 dxcols, 
                                 "preesrd5y_op_clm_inc", 
                                 qryAggType = 2, 
                                 testMode = 0 
                 )) 
 
op3 = dbGetQuery(con,prepareQuery( 
                                 dxcols, 
                                 "preesrd5y_op_clm_inc", 
                                 qryAggType = 3, 
                                 testMode = 0 
                 )) 
 
sn1 = dbGetQuery(con, prepareQuery( 
                                   dxcols, 
                                   "preesrd5y_sn_clm_inc", 
                                   qryAggType = 1, 
                                   testMode = 0 
                 )) 
 
sn2 = dbGetQuery(con, prepareQuery( 
                                   dxcols, 
                                   "preesrd5y_sn_clm_inc", 
                                   qryAggType = 2, 
                                   testMode = 0 
                 )) 
 
sn3 = dbGetQuery(con, prepareQuery( 



2-implementation-guidance.md 8/27/2021

51 / 198

                                   dxcols, 
                                   "preesrd5y_sn_clm_inc", 
                                   qryAggType = 3, 
                                   testMode = 0 
                 ))                 

Step 4. Calculate MAX(masked_clm_thru)-MIN(masked_clm_from) as the time range of claims for each

patient.

prepareAggQuery = function(clm_type) { 
  qry_main = str_glue("SELECT usrds_id,  
                        SUM(masked_clm_thru-masked_clm_from) AS stay, 
                        MAX(masked_clm_thru)-MIN(masked_clm_from) AS 
range,  
                        MIN(masked_clm_from) AS earliest_clm, 
                        MAX(masked_clm_thru) AS latest_clm,  
                        COUNT(*) AS claims  
                      FROM preesrd5y_{clm_type}_clm_inc 
                      GROUP BY usrds_id" 
                     )             
  return(qry_main) 
} 
 
hha = dbGetQuery(con, prepareAggQuery("hh")) 
ipa = dbGetQuery(con, prepareAggQuery("ip")) 
opa = dbGetQuery(con, prepareAggQuery("op")) 
sna = dbGetQuery(con, prepareAggQuery("sn")) 
hsa = dbGetQuery(con, prepareAggQuery("hs")) 

Note: A large amount of code devoted to creating queries is not included in this guide. See the code for

details.

Step 5. Get claims_range

df = dbGetQuery(con, qry) 
 
earliest_cols = names(df)[grepl("earliest_clm", names(df))] 
latest_cols = names(df)[grepl("latest_clm", names(df))] 
for (c in earliest_cols) { 
  df[, c] = ifelse(is.na(df[, c]), 500000, df[, c]) 
} 
for (c in latest_cols) { 
  df[, c] = ifelse(is.na(df[, c]), -500000, df[, c]) 
} 
 
earliest_claim_date = apply(df[, earliest_cols], 1, "min") 
latest_claim_date = apply(df[, latest_cols], 1, "max") 
df$claims_range = latest_claim_date - earliest_claim_date 
 



2-implementation-guidance.md 8/27/2021

52 / 198

cols_to_delete = union(earliest_cols, latest_cols) 
df[, cols_to_delete] = NULL 

Out of the individual columns named "has_dx_claimtype" (e.g., "has_neo_ip") create a single column

"has_dx"

has_cols = names(df)[grepl("has_", names(df))] 

Step 6. Create a list of diagnosis groupings

dxs = unique( 
  substr( 
    has_cols, 5, 7))  

Step 7. Create a binary result to yield 1 if the patients has any present, 0 if not, na if all are nans

Example 1: has_dia_ip=NA, has_dia_op=0, has_dia_sn=1. So x=c(NA,0,1). Then returns 1

Example 2: x=c(NA,NA,NA). Then returns NA

Example 3: x=c(NA,0,NA). Then returns 0

mymax = function(x) { 
  p_sum = sum(x > 0, na.rm = T) #number of positive elements 
  z_sum = sum(x == 0, na.rm = T) #number of zero elements 
  return(ifelse(p_sum > 0, 1, ifelse(z_sum > 0, 0, NA))) 
} 

Use this so we end up with NA if a vector is all NA

safe.max = function(invector) { 
  na.pct = sum(is.na(invector))/length(invector) 
  if (na.pct == 1) { 
    return(NA) } 
  else { 
    return(max(invector,na.rm=TRUE)) 
  } 
} 

For each diagnosis grouping

for (c in dxs) { 
  hasdxcols = has_cols[grepl(c, has_cols)] 
  df[,paste0("has_",c)]=apply( 
    df[,hasdxcols], 



2-implementation-guidance.md 8/27/2021

53 / 198

    1, 
    function(x) safe.max(as.numeric(x)) 
    ) 
} 
 
hasvars = names(df)[grepl("has_", names(df))] 
hasvarsettings = hasvars[grepl("_ip$|_op$|_sn$|_hh$|_hs$", hasvars)] 
df[, hasvarsettings] = NULL #remove variables like "has_neo_ip", keeping 
in "has_neo" 
df$claims_range = ifelse(df$claims_range < 0, NA, df$claims_range) 

Step 8. Create a binary feature for each claim type. These are used in the parametric models instead of the

detailed claim numbers.

df$prior_hh_care = as.integer(df$claims_hh > 0 & 
                                !is.na(df$claims_hh)) 
df$prior_hs_care = as.integer(df$claims_hs > 0 & 
                                !is.na(df$claims_hs)) 
df$prior_ip_care = as.integer(df$claims_ip > 0 & 
                                !is.na(df$claims_ip)) 
df$prior_op_care = as.integer(df$claims_op > 0 & 
                                !is.na(df$claims_op)) 
df$prior_sn_care = as.integer(df$claims_sn > 0 & 
                                !is.na(df$claims_sn)) 
priorvars = names(df)[grepl("prior_", names(df))] 
 
df$has_preesrd_claim = apply( 
  df[, priorvars],  
  1,  
  function(x) safe.max(as.numeric(x)) 
) 

Step 9. Save to Postgres as preesrdfeatures

drop_table_function(con, pre_esrd_tblname) 
dbWriteTable( 
  con, 
  pre_esrd_tblname, 
  df, 
  field.types = myfieldtypes, 
  append = FALSE, 
  row.names = FALSE 
) 

6.2.16 Join the preesrdfeatures Tables to the Partition Index

Steps to running the S4b_join_to_partition_data.R script



2-implementation-guidance.md 8/27/2021

54 / 198

Join the preesrdfeatures tables to our partition index.

Input:

preesrdfeatures 
partition_10 

Output:

preesrdfeatures 

Step 1. Define a function to import and alter the preesrdfeatures table by adding the subset column,

and save to Postgres.

join_data_partitions <- function(con,  
                                 data_tablename="preesrdfeatures",  
                                 num_partitions=10){ 
   
  dbSendStatement(con, str_glue( 
    " 
     ALTER TABLE {data_tablename}  
     ADD subset integer 
     "), n = -1) 
   
  dbSendStatement( 
    con,  
    str_glue( 
      " 
        UPDATE {data_tablename} d 
        SET subset = p.subset 
        FROM partition_{num_partitions} p 
        WHERE d.usrds_id = p.usrds_id 
        "), n = -1) 
} 

Step 2. Execute the function

data_tbl = "preesrdfeatures" 
 
join_data_partitions( 
  con, 
  data_tablename = data_tbl, 
  num_partitions = 10 
) 



2-implementation-guidance.md 8/27/2021

55 / 198

6.2.17 Map ICD-9 to ICD-10

Steps for S5_pdis_mapping.R

This script maps ICD-9 to ICD-10 codes and creates a table named pdis_recode_map which is used in

S6-Prepare Data Set, for assigning pdis to a numeric value called pdis_recode. The 2017_I9gem_map.txt

is used for this purpose.

PDIS (primary disease causing renal failure) is either the ICD-9 or ICD-10 code for the primary cause of

renal failure depending on the year of the claim. Claims prior to 2015 contain ICD-9 codes whereas claims

post-2016 contain ICD-10 codes. Claims from 2015 and 2016 can be either ICD-9 or ICD-10. The format for

the pdis variable in the USRDS data is as a character variable. The ICD-9 codes were mapped to their ICD-

10 equivalents to preserve the original meaning of the character variable in the numeric encoding. It was re-

coded by

Mapping all codes to their ICD-10 equivalent

Converting them to a factor

Typing them to a numeric

Input: The pdis column from patients_medevid_waitlist (originally comes from the patients table)

2017_I9gem_map.txt 
patients_medevid_waitlist 

Output:

pdis_recode_map 

Step 1. Import the data from Postgres.

df1 = dbGetQuery(con, 
                 "SELECT *  
                  FROM patients_medevid_waitlist") 

Whether the code is ICD-9 or ICD-10 is determined by the column cdtype. In order to create a map, we

must get each unique pdis value for each cdtype where cdtype is NOT missing (NULL). Exclude entries

where cdtype is missing (NULL). (There are 20,003 patients where cdtype is missing.)

pdis_occurrences = dbGetQuery(con, 
  "SELECT cdtype, pdis, COUNT(*) AS nmbr  
    FROM patients_medevid_waitlist 
    WHERE cdtype IS NOT NULL 
    GROUP BY pdis, cdtype" 
) 



2-implementation-guidance.md 8/27/2021

56 / 198

Step 2. Standardize the format so that we can match with another pdis file.

pdis_occurrences$pdis = pdis_occurrences$pdis %>%  
                            trimws() %>%  
                            str_pad(., 
                                    width = 7, 
                                    side = "right", 
                                    pad = "0" 
                                    ) 

Step 3. Import 2017_I9gem_map.txt

map_icd_9_to_10 = read.table(file = file.path(source_dir, 
"2017_I9gem_map.txt"),  
                             header = TRUE) %>%  
                             select(icd9, icd10) 

Step 4. Format columns

map_icd_9_to_10 = map_icd_9_to_10 %>%  
  mutate(icd9 = icd9 %>%  
                trimws() %>%  
                str_pad(., 
                        width = 7, 
                        side = "right", 
                        pad = "0" 
                        ), 
          icd10 = icd10 %>%  
                  trimws() %>%  
                  str_pad(., 
                          width = 7, 
                          side = "right", 
                          pad = "0" 
                        ) 
) 

ICD-10: The character-level pdis_recode is same as pdis when cdtype equals "D" (indicating ICD-10)

pdis_occurrences_D = pdis_occurrences %>% 
  filter(cdtype == "D") %>% 
  mutate(pdis_recode_char = pdis) 

Step 5. Use the crosswalk to map the ICD-9 codes to ICD-10



2-implementation-guidance.md 8/27/2021

57 / 198

pdis_occurrences_I = sqldf( 
  "SELECT a.*, b.icd10 AS pdis_recode_char  
   FROM pdis_occurrences a  
   LEFT JOIN map_icd_9_to_10 b  
     ON a.pdis=b.icd9  
     WHERE a.cdtype='I'", 
  method = "raw" 
) 

Step 6. Concatenate the 2 maps

pdis_recode_map = union(pdis_occurrences_D, pdis_occurrences_I) 
pdis_recode_map = pdis_recode_map %>%  
  mutate(pdis_recode = as.factor(pdis_recode_char) %>% as.numeric()) 

Step 7. Calculate the sum of each recode value when recode is not missing (NaN)

pdis_recode_agg = pdis_recode_map %>%  
  group_by(pdis_recode) %>%  
  dplyr::summarise(pdis_recode_nmbr = sum(nmbr)) %>% 
  as.data.frame() 
 
pdis_recode_map = pdis_recode_map %>% left_join(pdis_recode_agg, by = 
"pdis_recode") 

Step 8. Save to Postgres as pdis_recode_map

tblname = "pdis_recode_map" 
drop_table_function(con, tblname) 
dbWriteTable(con, 
             tblname, 
             pdis_recode_map, 
             append = FALSE, 
             row.names = FALSE) 

6.2.18 Prepare Data for Modeling

Steps for running S6-prepareDataSet.R script

This script creates medxpreesrd and uses the full dataset patients_medevid_waitlist and

preesrdfeatures to construct the table medxpreesrd by:

creating binary variables to indicate whether imputed values are missing or out of bounds for a given

patient

encoding character values to numeric



2-implementation-guidance.md 8/27/2021

58 / 198

counting the number of value types for como_* columns

incorporating pdis_recode column

deleting features not used for modeling

Input:

patients_medevid_waitlist 
preesrdfeatures 
pdis_recode_map 
dxmap 
imputation_rules.xlsx 

Output:

medxpreesrd 

Step 1. Define variables

subsets = "0, 1" 
tablename = "patients_medevid_waitlist" 
table_preesrd = "preesrdfeatures" 
medex_tblname = "medxpreesrd" 

Step 2. Import 2 partitions of data (subsets = "0, 1") from patients_medevid_waitlist. This code
should be run 5 times (for the 10 partitions/subsets), but this example will be for 1 loop. The code contains

the details to run the functions for the remaining partitions.

qry = str_glue( 
                  "SELECT * 
                  FROM {tablename}  
                  WHERE subset IN ({subsets})" 
                ) 
data_subset = dbGetQuery(con, qry) 

For each variable in the list vars=(c("height","weight","bmi","sercr","album","gfr_epi","heglb"), introduce a

binary variable for whether the variable is NA (which means "missing") and a separate binary variable for

whether it is out of bounds (that is, not missing but below the clinically plausible min or above the clinically

plausible max as determined by UCSF clinicians). These boundaries are imported from

imputation_rules.xlsx. The function valueExceptions returns a data frame with usrds_id (the key field) and

binary values to indicate whether or not each column in vars is NA.

valueExceptions = function(df, vars) { 
  bounds = read_excel(str_glue("{source_dir}imputation_rules.xlsx"), sheet 



2-implementation-guidance.md 8/27/2021

59 / 198

= 
                        "Bounds") %>% as.data.frame() 
  isnavars = c() 
  for (v in vars) { 
    newv = str_glue("wasna_{v}") 
    df[, newv] = as.integer(is.na(df[, v])) 
    isnavars = c(isnavars, newv) 
  } 
  outofbndsvars = c() 
  for (v in vars) { 
    newv = str_glue("outofbnds_{v}") 
    df[, newv] = as.integer(!is.na(df[, v]) & 
                              !(df[, v] >= bounds[1, v] & 
                                  df[, v] <= bounds[2, v])) 
    outofbndsvars = c(outofbndsvars, newv) 
  } 
  return(df[, c("usrds_id", isnavars, outofbndsvars)]) 
} 

Step 3. Execute valueExceptions

labvars=c("height","weight","bmi","sercr","album","gfr_epi","heglb") 
ve=valueExceptions(data_subset,labvars) 

Join the out of bounds binary indicators for each patient to the data.

df=data_subset %>%  
    left_join( 
      ve, 
      by="usrds_id") 

Step 4. Create a function to set the values to NA if it is out of bounds.

setOutOfBoundsToNA=function(df,vars) { 
  for (v in vars) { 
    df[,v]=ifelse( 
      df[,paste0("outofbnds_",v)] == 1, 
      NA, 
      df[,v]) 
  } 
  return(df) 
} 

Step 5. Execute the above function on the data



2-implementation-guidance.md 8/27/2021

60 / 198

df=setOutOfBoundsToNA(df,labvars) 
oobvars = setdiff(names(df),names(data_subset)) 

Step 6. Get the list of categorical features.

getCategoryVars <- function(dataset){ 
  pattern1 = "^MEDCOV|^PATTXOP|^PATINFORMED$|^DIET|^NEPHCARE|^EPO" %>% 
tolower() 
  pattern2 = "^DIAL|^TYPTRN|^AVGMATURING|^AVFMATURING" %>% tolower() 
  pattern3 = "^ACCESSTYPE|^TRCERT|^CDTYPE" %>% tolower() 
  pattern4 = "^EMPCUR|^EMPPREV|^pdis$|^hispanic$|^COMO_" %>% tolower() 
  categoryVars = names(dataset)[grepl(pattern1, names(dataset))] 
  categoryVars = union(categoryVars, names(dataset)[grepl(pattern2, 
names(dataset))]) 
  categoryVars = union(categoryVars, names(dataset)[grepl(pattern3, 
names(dataset))]) 
  categoryVars = union(categoryVars, names(dataset)[grepl(pattern4, 
names(dataset))]) 
  return(categoryVars) 
} 
 
categoryVars = getCategoryVars(df) 

Step 7. Get the list of continuous features

getContinuousVars <- function(dataset){ 
  pattern_continuous = 
"^GFR_EPI|^SERCR|^ALBUM|^HEGLB|^HBA1C|^BMI$|^HEIGHT|^WEIGHT" %>% tolower() 
  continuousVars = names(dataset)[grepl(pattern_continuous, 
names(dataset))] 
  return(continuousVars) 
} 
continuousVars = getContinuousVars(df) 
df = df[, c("usrds_id", 
              "subset", 
              "comorbid", 
              "inc_age", 
              "race", 
              "sex", 
              "disgrpc", 
              "waitlist_status", 
              "days_on_waitlist", 
              "died_in_90", 
              oobvars, 
              categoryVars, 
              continuousVars)] 



2-implementation-guidance.md 8/27/2021

61 / 198

Step 8. Get non numeric features

getNonNumericCols = function(dx) { 
  cols = c() 
  for (v in names(dx)) { 
    if (!is.numeric(dx[, v])) { 
      cols = c(cols, v) 
    } 
  } 
  return(cols) 
} 
nonNumCols = setdiff(getNonNumericCols(df), c("pdis", "comorbid", 
"cdtype","hispanic","waitlist_status")) 

ML models typically require numeric values instead of characters or factors. The function

replaceCharacterVals ensures that character values are replaced with a number.

replaceCharacterVals = function(dx,  
                                vars, 
                                sourceValue = c("N", "Y", "M", "F", "U", 
"C", "X", "D", "I", "A", "R"), 
                                sinkValue = c("2", "1", "12", "13", "9", 
"15", "16", "17", "18", "20", "21")) 
{ 
  for (v in vars) { 
    print(v) 
    dx[, v] = mapvalues(pull(dx, v), sourceValue, sinkValue) 
    dx[, v] = as.integer(pull(dx, v)) 
  } 
  return(dx) 
} 
df = replaceCharacterVals(df, nonNumCols) 

pdis must be encoded as a number prior to ML model training.

recodePdis = function(df, con) { 
  df$pdis = df$pdis %>%  
    trimws() %>% str_pad(., 
                         width = 7, 
                         side = "right", 
                         pad = "0") #Format pdis with the same padding as 
in pdis_recode_map 
  pdis_map = dbGetQuery( 
    con, " 
    SELECT pdis, cdtype, pdis_recode 
    FROM pdis_recode_map")  
 
  pdis_map = pdis_map %>%  



2-implementation-guidance.md 8/27/2021

62 / 198

    group_by(pdis, cdtype) %>%  
    dplyr::summarise(pdis_recode = min(pdis_recode)) 
 
  df = df %>%  
    left_join( 
      pdis_map,  
      by = c("cdtype", "pdis")) %>%  
    mutate( 
      pdis_recode = ifelse(is.na(pdis_recode), 9999, pdis_recode) 
      ) 
   
  return(df) 
} 
df = recodePdis(df, con) 

Step 9. Count value types in como_* variables for each ID

comoEncode <- function(dataset){ 
    como_names = names(dataset)[grepl("^como_", names(dataset))] 
 
    dataset$num_como_nas = apply( 
      dataset[, como_names], 
      1, 
      function(xx) 
        sum(is.na(xx)) 
      ) 
    dataset$num_como_Ns = apply( 
      dataset[, como_names], 
      1, 
      function(xx) 
        sum(xx == 2, na.rm = TRUE) 
      ) 
    dataset$num_como_Ys = apply( 
      dataset[, como_names], 
      1, 
      function(xx) 
        sum(xx == 1, na.rm = TRUE) 
      ) 
    dataset$num_como_Us = apply( 
      dataset[, como_names], 
      1, 
      function(xx) 
        sum(xx == 9, na.rm = TRUE) 
      ) 
    return(dataset) 
} 
df = comoEncode(df) 

Step 10. Remove features from the medevid table that are not needed for the ML models



2-implementation-guidance.md 8/27/2021

63 / 198

All comorbidities that are only captured on the 1995 Medical Evidence Form (and therefore before

our cohort ESRD inicident years of 2008-2017), such as como_cararr, como__hiv, etc.

All laboratory variables that have greater than 40% missingness, such as albumin and hba1c

All year variables and masked dates, such as incyear, masked_died, etc.

All pdis (primary disease causing ESRD) re-formatted variables, such as pdis_count,

pdis_mortality, etc.

  varsToDelete = c( 
    "albumlm", 
    "como_ihd", 
    "como_mi", 
    "como_cararr", 
    "como_dysrhyt", 
    "como_pericar", 
    "como_diabprim", 
    "como_hiv", 
    "como_aids", 
    "comorbid_count", 
    "comorbid_mortality", 
    "comorbid_se", 
    "comorbid", 
    "ethn", 
    "hba1c", 
    "incyear", 
    "masked_died", 
    "masked_tx1fail", 
    "masked_txactdt", 
    "masked_txlstdt", 
    "masked_txinitdt", 
    "masked_remdate", 
    "masked_unossdt", 
    "masked_mefdate", 
    "masked_ctdate", 
    "masked_tdate", 
    "masked_patsign", 
    "masked_trstdat", 
    "masked_trnend", 
    "pdis_count", 
    "pdis_mortality", 
    "pdis_se", 
    "pdis", 
    "recnum", 
    "tottx" 
  ) 
df[, varsToDelete] = NULL 

Step 11. Get the preesrdfeatures for the 2 subsets of data.

qry = str_glue( 
        "SELECT * 



2-implementation-guidance.md 8/27/2021

64 / 198

        FROM {table_preesrd}  
        WHERE subset in ({subsets})" 
        ) 
preesrd = dbGetQuery(con, qry) 

Step 12. Join the data with columns from preesrdfeatures

full_data = df %>% 
    left_join( 
      preesrd, 
      by = c("usrds_id","subset") 
      ) 

Step 13. Save to Postgres as medxpreesrd

dbWriteTable( 
    con, 
    "medxpreesrd", 
    full_data, 
    row.names = FALSE 
           ) 

6.2.19 Impute Missing Values

Missing data have the potential to introduce bias and loss of information, which can result in invalid

conclusions. Multiple imputation was chosen as the method to impute missing values over single imputation

methods because it addresses the uncertainty about missing data by creating several plausible imputed

datasets. For this project, multiple imputation was performed on the clinical and laboratory values (height,

weight, BMI , serum creatinine, serum albumin, hemoglobin, and GFR-EPI) using the MICE (multiple

imputations by chained equations) library in R (version 3.13.0), the predictive mean matching methodology

for the imputations, and 5 imputations (5 datasets) to achieve 95% relative efficiency.

Steps for running S7_makeImputations.R

This script contains the code to create 5 imputations for missing data for each of the laboratory variables

weight 
height 
gfr_epi 
sercr 
album 

and saves the data to Postgres as the micecomplete_pmm table.



2-implementation-guidance.md 8/27/2021

65 / 198

The table micecomplete_pmm has 5 rows per usrds_id, for each of the imputed columns. There is one

row per imputation, hence 5 rows per usrds_id. A modeler who wants to use imputed values would use

both medxpreesrd and micecomplete_pmm, replacing weight, height, bmi, sercr, etc. in medxpreesrd
with the imputed values in micecomplete_pmm. This is shown in the modeling steps.

Input:

imputation_rules.xlsx

medxpreesrd 

Output:

micecomplete_pmm 

Step 1. Define the function to import the data and impute the missing values and save to Postgres as a new

table. The function:

Sets out-of-bounds values to NA so that they will be imputed

Lists the variables to impute

Lists the variables used to inform the imputation

Imputes the missing values

Calculates BMI and GFR as they are derived from other imputed variables

makeImputations <-  
  function(con, subset, bounds, impseed, data_tablename) { 
    df = dbGetQuery( 
      con,  
      str_glue( 
        "SELECT *  
        FROM {data_tablename} 
        WHERE subset={subset}" 
      )) 
       
    varstoimpute = names(bounds)[2:length(names(bounds))] 
 
    varstoimpute = c( 
      "height", 
      "weight", 
      "bmi", 
      "sercr", 
      "album", 
      "gfr_epi", 
      "heglb" 
      ) 
 
    varstouse = c( 



2-implementation-guidance.md 8/27/2021

66 / 198

      "inc_age", 
      "race", 
      "sex", 
      "hispanic", 
      "num_como_nas", 
      "num_como_Ns", 
      "num_como_Ys", 
      "num_como_Us", 
      "sercr", 
      "height", 
      "weight", 
      "album", 
      "heglb" 
    )  
 
    dg = df[, c("usrds_id", union(varstoimpute, varstouse))] 
    dh = df[, c("usrds_id", "wasna_gfr_epi")] 
    dg = dg %>%  
      mutate( 
        hispanic = as.factor(hispanic), 
        race = as.factor(race), 
        sex = ifelse(is.na(sex), 0, sex) %>%  
          as.factor() 
    ) 
     
    imp <- mice(dg, seed = impseed, maxit = 0) 
    predictorMatrixDf = imp$predictorMatrix  
    #An entry of 1 means the column variable was used to impute the row 
variable 
    meth = imp$method 
     
    #row_imputed indexes the row (variable to be imputed); 
    #c indexes the column (variable to use as an independent variable to 
impute row_imputed) 
    for (row_imputed in colnames(predictorMatrixDf)) { 
      predictorMatrixDf[,row_imputed ] = 0 
    } 
     
    for (col_imputed in varstoimpute) { 
      for (impute_by in varstouse) { 
        if (col_imputed != impute_by) 
          predictorMatrixDf[col_imputed, impute_by] = 1 
      } 
  } 
   
  # bmi is arithmetically related to weight and height 
  # so it needs to be handled with a separate model 
  predictorMatrixDf["bmi", "height"] = 1 
  predictorMatrixDf["bmi", "weight"] = 1 
   
  for (to_use in c("usrds_id", varstouse)) { 
    meth[to_use] = "" 
  } 
  for (to_impute in varstoimpute) { 



2-implementation-guidance.md 8/27/2021

67 / 198

    meth[to_impute] = "pmm" 
  } 
  meth["bmi"] = "~ I(weight/(.01*height)^2)" 
  #Model the arithmetic relationship among bmi, weight, and height 
   
  miceimp <- 
    mice( 
      dg, 
      m = 5, 
      maxit = 20, 
      threshold = .99999, 
      seed = impseed, 
      predictorMatrix = predictorMatrixDf, 
      method = meth, 
      print =  FALSE 
    ) 
   
  writeImputations( 
    con,  
    miceimp,  
    varstoimpute,  
    dh,  
    subset 
    ) 
  return(0) 
   
} 

Step 2. Set the seeds for each subset, import the boundary data.

seeds = c(2397, 3289, 4323, 4732, 691, 2388, 2688, 176, 1521, 461) 
source_dir = file.path("CreateDataSet") 
bounds = read_excel(file.path(source_dir, "imputation_rules.xlsx"), sheet 
="Bounds" 
                    ) %>% as.data.frame() 

Step 3. Execute the makeImputations function for each subset of the data (according to the 10 partitions).

for (s in 0:9) { 
  makeImputations( 
    con,  
    subset = s, 
    bounds,  
    impseed = seeds[s], 
    data_tablename="medxpreesrd" 
    ) 
} 



2-implementation-guidance.md 8/27/2021

68 / 198

Points to consider

�. Curating clinical and laboratory variables requires input from clinicians to remove outlier values and to

properly identify relevant variables to retain in the training dataset. For example:

Both hemoglobin and hematocrit are included in the USRDS data and are used by clinicians to

identify anemia. Clinicans identified hemoglobin as the more accurate variable so hematocrit was

removed from the training dataset since keeping both features results in redunant data.

GFR-EPI is kept in the training data as it is perferred in clinical practice over GFR MDRD.

�. For smaller datasets, all features in the training dataset can be used to inform the imputation. With a

dataset of over 1 million observations, using all features is time prohibitive. Variables that are rarely

missing and correlate with the variables to be imputed (age, race, sex, ethnicity, number of

comorbidities, and the clinical/laboratory values) were used in the imputation model for this project.

�. Variables like BMI and GFR should be passively imputed since they are derived from other imputed

variables (BMI: height and weight, GFR: serum creatinine, along with age, sex, and race)

�. There are various types of imputation methods that can be selected from the 'mice' package, such as

'norm', 'pmmm', etc. Running a goodness of the imputations test by masking and then imputing

known values as well as comparing the runtimes for each method will help the user select the

appropriate imputation method.

�. Only the features that were missing at random (MAR) with a percent missingness <40% were

imputed (i.e., clinical and laboratory values of height, weight, BMI , serum creatinine, serum albumin,

hemoglobin, and GFR-EPI). Future researchers could improve the imputations by imputing features

that are missing not at random (MNAR) with a more complex imputation model. Additionally other

multiple imputation packages, such as the multiple imputation (MI) and Amelias packages, could also

be used for the imputations.

�. Storing imputations in a database table separate from the table storing medevid, patients, and pre-

ESRD data prevents the rest of the training dataset from being stored five times; it also reduces the

amount of storage required for the training dataset.

6.2.20 Utility files

dx_mappings_ucsf.csv

Utility file: Used by the script S3d_dxCodeGrouping.R to produce the table dxMap

UCSF advised the categorizations of diagnosis codes.

2017_I9gem_map.txt

Utility file: Used by the script S5_pdis_mapping.R to produce the table pdis_recode_map for mapping

pdis codes between ICD-9 and ICD-10.

icd10_ccs_codes.R

Utility file: Used by the script S3d_dxCodeGrouping.R to produce the table dxMap

file:///Users/summerrankin/ONC_CODE/ONC_final/6217-map-icd9-to-icd10


2-implementation-guidance.md 8/27/2021

69 / 198

Group codes related to alcohol abuse, drug abuse, pulmonary disorders, and renal failure based on the

Clinical classification system (CCS) rules for grouping ICD-10 diagnosis codes.

See https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp#download

icd10_dx_codes.txt

Utility file: Used by the script S3d_dxCodeGrouping.R to produce the table dxMap

Group codes related to alcohol abuse, drug abuse, pulmonary disorders, and renal failure based on the

Clinical classification system (CCS) rules for grouping ICD-10 diagnosis codes.

See https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp#download

icd9_ccs_codes.R

Utility file: Used by the script S3d_dxCodeGrouping.R to produce the table dxMap

Group codes related to alcohol abuse, drug abuse, pulmonary disorders, and renal failure based on the

Clinical classification system (CCS) rules for grouping ICD-9 diagnosis codes.

See https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp#download

icd9_dx_2014.txt

Utility file: Used by the script S3d_dxCodeGrouping.R to produce the table dxMap

Group codes related to alcohol abuse, drug abuse, pulmonary disorders, and renal failure based on the

Clinical classification system (CCS) rules for grouping ICD9 diagnosis codes.

See https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp#download

imputation_rules.xlsx

Utility used by script S7-makeImputations.R and S6-prepareDataSet.R

Contains the upper and lower bounds for clinical and laboratory variables.

Table: Upper and lower bounds for clinical and laboratory variables

Variable Lower bound Upper bound

Height (cm) 76 243

Weight (kg) 20 250

BMI (kg/m2) 13 75

Serum Creatinine (mg/dL) 0.5 50

Serum Albumin (g/dL) 0.5 8

GFR EPI 1 30

Hemoglobin (g/dL) 2 18

https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp#download
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp#download
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp#download
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp#download


2-implementation-guidance.md 8/27/2021

70 / 198

pre_esrd_ip_claim_variables.R

Utility: used by S3a_esrd_claims.R

Filenames and column types to input into S3a_esrd_claims.R to create the table for the inpatient (IP) pre-

ESRD claims from 2011-2017. Pre-ESRD claims in USRDS are kept in files specific to the year. The order of

these filenames is very important as the 2012 table needs to be created first in the function. The .csv files

named here are produced in script S1a-convertSAStoCSV.R

Filenames:

"preesrd5y_ip_clm_inc2012" 
"preesrd5y_ip_clm_inc2013" 
"preesrd5y_ip_clm_inc2014" 
"preesrd5y_ip_clm_inc2015" 
"preesrd5y_ip_clm_inc2016" 
"preesrd5y_ip_clm_inc2017" 
"preesrd5y_ip_clm_inc2011" 

pre_esrd_hh_claim_variables.R

Utility: used by S3a_esrd_claims.R

File names and column types to input into S3a_esrd_claims.R to create the table for the home health (HH)

pre-ESRD claims from 2011-2017. Pre-ESRD claims in USRDS are kept in files specific to the year. The order

of these filenames is very important as the 2012 table needs to be created first in the function. The .csv files

named here are produced in script S1a-convertSAStoCSV.R

Filenames:

"preesrd5y_hh_clm_inc2012" 
"preesrd5y_hh_clm_inc2013" 
"preesrd5y_hh_clm_inc2014" 
"preesrd5y_hh_clm_inc2015" 
"preesrd5y_hh_clm_inc2016" 
"preesrd5y_hh_clm_inc2017" 
"preesrd5y_hh_clm_inc2011" 

pre_esrd_hs_claim_variables.R

Utility: used by S3a_esrd_claims.R

Filenames and column types to input into S3a_esrd_claims.R to create the table for the hospice (HS) pre-

ESRD claims from 2011-2017. Pre-ESRD claims in USRDS are kept in files specific to the year. The order of

these filenames is very important as the 2012 table needs to be created first in the function. The .csv files

named here are produced in script S1a-convertSAStoCSV.R

Filenames:



2-implementation-guidance.md 8/27/2021

71 / 198

"preesrd5y_hs_clm_inc2012" 
"preesrd5y_hs_clm_inc2013" 
"preesrd5y_hs_clm_inc2014" 
"preesrd5y_hs_clm_inc2015" 
"preesrd5y_hs_clm_inc2016" 
"preesrd5y_hs_clm_inc2017" 
"preesrd5y_hs_clm_inc2011" 

pre_esrd_op_claim_variables.R

Utility script: used by S3a_esrd_claims.R

Filenames and column types to input into S3a_esrd_claims.R to create the table for the outpatient (OP) pre-

ESRD claims from 2011-2017. Pre-ESRD claims in USRDS are kept in files specific to the year. The order of

these filenames is very important as the 2012 table needs to be created first in the function. The .csv files

named here are produced in script S1a-convertSAStoCSV.R

Filenames:

"preesrd5y_op_clm_inc2012" 
"preesrd5y_op_clm_inc2013" 
"preesrd5y_op_clm_inc2014" 
"preesrd5y_op_clm_inc2015" 
"preesrd5y_op_clm_inc2016" 
"preesrd5y_op_clm_inc2017" 
"preesrd5y_op_clm_inc2011" 

pre_esrd_sn_claim_variables.R

Utility: used by S3a_esrd_claims.R

Filenames and column types to input into S3a_esrd_claims.R to create the table for the skilled nursing (SN)

pre-ESRD claims from 2011-2017. Pre-ESRD claims in USRDS are kept in files specific to the year. The order

of these filenames is very important as the 2012 table needs to be created first in the function. The .csv files

named here are produced in script S1a-convertSAStoCSV.R.

Filenames:

"preesrd5y_sn_clm_inc2012" 
"preesrd5y_sn_clm_inc2013" 
"preesrd5y_sn_clm_inc2014" 
"preesrd5y_sn_clm_inc2015" 
"preesrd5y_sn_clm_inc2016" 
"preesrd5y_sn_clm_inc2017" 
"preesrd5y_sn_clm_inc2011" 



2-implementation-guidance.md 8/27/2021

72 / 198

pre_esrd_pre2011_claim_variables.R

Utility: used by S3c_esrd_claims_pre_2011.R

Filenames and column types to input into S3c_esrd_claims_pre_2011.R to create the tables for the pre-

ESRD claims from 2008-2010. Pre-2011 pre-ESRD claims in USRDS are kept in files specific to the year but

not claim type. The .csv files named here are produced in script S1a-convertSAStoCSV.R.

Filenames:

inc2010 
inc2009 
inc2008 

setfieldtypes.R

Used by the script S4a_pre_esrd_full.R

Utility file: The "setfieldtypes" utility is used in order to cast these column types explicitly, thereby avoiding

auto assignment of "integer64" as the column data type.

6.2.21 Documentation of the Training Dataset

All features included in the training dataset are documented in the data dictionary. Features fall into two

main categories:

Features taken directly from USRDS

Features constructed from the data in USRDS

Additionally, all features in the training dataset are labeled as operational or not operational to identify and

flag "nuisance variables" in the training dataset to ensure the that the ML models do not learn on noise.

6.3 ML Modeling and Evaluation

Three ML algorithms were selected to provisionally test the training dataset: eXtreme gradient boosting

(XGBoost), logistic regression (LR), and a neural network implementation--multilayer perceptron (MLP).

Some of the general considerations for selecting an algorithm include characteristics of the training dataset

(tabular data vs image data, number of features, etc.), algorithms that have performed well in a specific

domain area (kidney disease/clinical use cases), and available computational resources (for example, deep

learning algorithms require intense compute resources). The algorithms that were selected are a mixture of

non-parametric (XGBoost) and parametric (LR and MLP) models.

XGBoost is a popular implementation of gradient boosted decision trees because it performs

especially well for tabular data, can be applied to a wide array of use cases, data types, and desired

prediction outcomes (regression vs classification), and can handle missing value natively which

allows for a comparison between models run on non-imputed data versus models run on imputed

data.



2-implementation-guidance.md 8/27/2021

73 / 198

LR is a classic categorization model that can be used to examine the association of (categorical or

continuous) independent variable(s) with one binary dependent variable. However, it requires that the

input dataset have no missing values.

MLP is a class of hierarchical artificial neural network (ANN) that consists of at least three layers of

nodes – an input layer, a hidden layer and an output layer – to carry out the process of machine

learning. They are used for tabular datasets and classification prediction problems.

The training dataset derived from the raw USRDS dataset was developed by building features relevant to

the use case – predicting mortality in the first 90 days of dialysis. Each feature captures information known

about a patient on or prior to the date of dialysis initiation. The final structure of the training dataset, which

was used to train and test the ML models, consists of approximately 200 features, and has one record per

patient. Two sets of features were included in the training dataset: features taken directly from the USRDS

datasets and features that were constructed. The training dataset with the full set of features were split into

train and test at approximately a 70/30 ratio.

Each section below contains the code for pre-processing the data, hyperparameter tuning, final modeling,

calibration, fairness assessment, and risk assessment for each model. All models were evaluated using area

under the receiver operating characteristic curve (AUC ROC) and confusion matrix (true positives, true



2-implementation-guidance.md 8/27/2021

74 / 198

negatives, false positives, and false negatives) evaluated at thresholds from 0.1 to 0.5. 

Points to Consider

The 90-day mortality outcome was predicted using USRDS data available from patients on or prior to being

diagnosed with ESRD, who progressed to ESRD. This means that the ML models predicted an outcome

conditional on ESRD (e.g., the models are applicable only to those having ESRD). Future extensions of this

work could merge USRDS data with EHR data to be able to predict progression to ESRD or incorporate

patient-centered features from EHR data to better predict mortality in the first 90 days after dialysis

initiation

6.3.1 Non-Imputed XGBoost Model

All results for the non-imputed XGBoost model are located in the /roc_auc/ directory.

Environment



2-implementation-guidance.md 8/27/2021

75 / 198

The environment used for the non-imputed XGBoost model was purchased on Amazon Web Services

(AWS):

Name: m5.4xlarge 
vCPU: 16 
GPU: 0 
Cores: 8 
Threads per core: 2 
Architecture: x86_64 
Memory: 64 GB 
Operating System: Linux (Ubuntu 20.04.1 Focal Fossa) 
Network Performance: 10 GB or less 
Zone: US govcloud west 

All sections of code for the non-imputed XGBoost model takes approximately 2 days to run.

The XGBoost models were created using R (version 3.6.3 (2020-02-29)) and the following libraries:

R library Version

RPostgres 1.3.1

DBI 1.1.1

stringr 1.4.0

haven 2.4.0

readr 1.4.0

lubridate 1.7.9.2

dplyr 1.0.4

magrittr 1.5

tidyr 1.1.2

sqldf 0.4-11

RSQLite 2.2.3

gsubfn 0.7

proto 1.0.0

readxl 1.3.1

plyr 1.8.6

skimr 2.1.2

data.table 1.14.0

mltools 0.3.5



2-implementation-guidance.md 8/27/2021

76 / 198

R library Version

here 1.0.1

rgenoud 5.8-3.0

DiceKriging 1.5.8

purrr 0.3.4

mlrMBO 1.1.5

mlr 2.18.0

smoof 1.6.0.2

checkmate 2.0.0

ParamHelpers 1.14

xgboost 1.3.2.1

Matrix 1.2-18

rBayesianOptimization 1.1.0

rsample 0.0.9

pROC 1.17.0.1

openxlsx 4.2.3

6.3.1.1 Pre-processing the training dataset

XGBoost can only handle numeric values as inputs to the model and can natively handle missing values -

so, all categorical variables were one-hot encoded into dummy variables that are binary indicators of each

factor in the categorical features (e.g., the sex feature will be turned into 3 columns: sex_1 (male), sex_2

(female), sex_3 (unknown)).

Steps for running the 0_xgb_nonimputed_preprocess.R script

Inputs:

medexpressesrdtable from the Postgres database

category_variables.R

Outputs:

universe.RData (data ready for modeling)

Step 1. Load the libraries

library(RPostgres) #Interface to PostgreSQL 
library(DBI) #R database interface 
library(dplyr) 
library(tidyr)  
library(skimr) #Summarizing databases 
library(data.table) 



2-implementation-guidance.md 8/27/2021

77 / 198

library(mltools) #data.table and mltools are needed for the "one_hot" 
function 
library(readr)  #read rds 

Step 2. Load the list of categorical variables

source(file.path("~","ONC_xgboost","category_variables.R")) 

Step 3. Connect to the Postgres database and load the medexpressesrd table as the variable universe

The credentials required to connect to the database should be inserted in the following snippet of code

below:

con <- dbConnect( 
  RPostgres::Postgres(), 
  dbname = '', 
  host = '', 
  port = '', 
  user = '', 
  password = '') 

The data from the database is loaded into R as the variable universe.

universe=dbGetQuery( 
  con, 
  "SELECT * 
  FROM medxpreesrd") 

Step 4. Set numeric features as numeric type

num_vars = setdiff(names(universe) , categoryVars) 
 
continuous_vars = c("height", "weight", "bmi", "sercr", "album", 
"gfr_epi", "heglb") 
 
num_vars = setdiff(num_vars, continuous_vars) 
for (cc in num_vars) { 
  universe[,cc]=as.numeric(universe[,cc]) 
} 

Step 5. Separate categorical features from continuous and numeric to one-hot encode



2-implementation-guidance.md 8/27/2021

78 / 198

for (c in categoryVars) { 
  universe[,c]=as.factor(universe[,c]) 
} 
universe=data.table(universe) 
universe=one_hot(as.data.table(universe), naCols=TRUE, dropUnusedLevels = 
TRUE) 

Step 6. Save the pre-processed data

save(universe, file="universe.RData") 

Points to consider

One-hot encoding the categorical variables is preferable to numeric encoding (casting categorical

encodings as numeric) as it is a better numeric representation of ordinal variables. However, one-hot

encoding increases the number of variables in the training dataset which increases run time.

6.3.1.2 Hyperparameter tuning for the non-imputed dataset

Hyperparameters were tuned on the training partitions for the non-imputed dataset with a Bayesian

optimization and 5-fold cross validation to identify the optimal hyperparameters for the model. Bayesian

optimization is the preferred method for hyperparameter tuning (versus grid search or random search)

because it is able to find a set of hyperparameters that result in model performance equivalent to what the

model performance would have been if the optimal hyperparameters had been found through exhaustive

grid search. Exhaustive grid search can require testing tens of thousands of hyperparameter sets, which

could be computationally infeasible or take an extraordinary amount of time. Because Bayesian optimization

tests the combinations in an informed appoach, it is often able to find an optimal set of hyperparameters in

only 50-100 iterations.

The best performing model was evaluated by the selecting the hyperparameter combination with the

highest AUC ROC.

Steps for running the 1_xgb_nonimputed_cv.R script

Input:

universe.RData

Output:

2021_xgb_cv_results_nonimputed.RData

Step 1. Load the libraries

library(RPostgres) 
library(DBI) 
library(xgboost) 
library(dplyr) 
library(tidyr) 
library(magrittr) 



2-implementation-guidance.md 8/27/2021

79 / 198

library(smoof) 
library(mlrMBO)  # for bayesian optimisation   
library(skimr) # for summarizing databases 
library(purrr) # to evaluate the loglikelihood of each parameter set in 
the random grid search 
library(DiceKriging) 
library(rgenoud) 
library(here) 
library(data.table) 
library(mltools) #data.table and mltools are needed for "one_hot" function 
library(readr)  #read rds 

Step 2. Load the one hot encoded data and keep only the training subsets (1-6) and separate dependent

variable and non-feature columns used for identification or subsetting

load('universe.RData') 
 
depvar = "died_in_90" 
trainsubsets = c(0,1,2,3,4,5,6) 
 
rhscols = setdiff(names(universe), c("usrds_id", "subset", "died_in_90")) 
 
train_onc=universe %>% filter(subset %in% trainsubsets) %>% 
as.data.frame() 

Step 3. Generate the list of indices for 5-fold cross validation

# creating 5 fold validation 
cv_folds = rBayesianOptimization::KFold(train_onc[, depvar],  
                                        nfolds= 5, 
                                        stratified = TRUE, 
                                        seed= 0) 

Step 4. Prepare the training dataset as a matrix

dtrain <-xgb.DMatrix(as.matrix(train_onc[, rhscols]), label = train_onc[, 
depvar]) 

Step 5. Define the parameters for hyperparameter tuning

The hyperparameters that were selected for tuning and the ranges that were tuned were:

Parameter Range

Eta 0.001 - 0.8



2-implementation-guidance.md 8/27/2021

80 / 198

Parameter Range

Gamma 0 - 9

Lambda 1 -9

Alpha 0 - 9

Max Depth 2 - 10

Minimum Child Weight 1 - 5

Number of Rounds 10 - 500

Subsample 0.2 - 1

Column Sample by Tree 0.3 - 1

Maxiumum Bin 255 - 1023

Additional information on these hyperparameters can be found at https://xgboost.readthedocs.io/en/latest/.

Parameters that were set include:

scale_pos_weight as 3.5, which is the square root of the ratio of the negative class (survived the first

90 days of dialysis) and the positive class (died in the first 90 days of dialysis). This parameter

handles the class imbalance by weighting the minority class (died in the first 90 days of dialysis).

Number of iterations as 100. Bayesian optimization will run through 100 iterations to identify the

optimal hyperparameters.

Early stopping rounds to 15, as evaluated using the highest AUC ROC. This parameter ends model

training if the AUC ROC has not increased in 15 iterations.

# Tune parameters --------------------------------------------------- 
obj.fun  <- smoof::makeSingleObjectiveFunction( 
  name = "xgb_cv_bayes", 
  fn =   function(x){ 
    set.seed(12345) 
    cv <- xgb.cv(params = list( 
      booster          = "gbtree", 
      scale_pos_weight = sqrt(12), 
      eta              = x["eta"], 
      max_depth        = x["max_depth"], 
      min_child_weight = x["min_child_weight"], 
      gamma            = x["gamma"], 
      lambda           = x["lambda"], 
      alpha            = x["alpha"], 
      subsample        = x["subsample"], 
      colsample_bytree = x["colsample_bytree"], 
      max_bin          = x["max_bin"], 
      objective        = 'binary:logistic',  
      eval_metric     = "auc", 
      tree_method     = "hist"), 
      data=dtrain, 
      nrounds = x["nround"],  



2-implementation-guidance.md 8/27/2021

81 / 198

      folds =  cv_folds,  
      prediction = FALSE, 
      showsd = TRUE, 
      early_stopping_rounds = 15, 
      verbose = 1) 
     
    cv$evaluation_log[, max(test_auc_mean)] 
  }, 
  par.set = makeParamSet( 
    makeNumericParam("eta",              lower = 0.001, upper = 0.8), 
    makeNumericParam("gamma",            lower = 0,     upper = 9), 
    makeNumericParam("lambda",           lower = 1,     upper = 9), 
    makeNumericParam("alpha",            lower = 0,     upper = 9), 
    makeIntegerParam("max_depth",        lower = 2,      upper = 10), 
    makeIntegerParam("min_child_weight", lower = 1,      upper = 5), 
    makeIntegerParam("nround",           lower = 10,      upper = 500), 
    makeNumericParam("subsample",        lower = 0.2,   upper = 1), 
    makeNumericParam("colsample_bytree", lower = 0.3,   upper = 1), 
    makeIntegerParam("max_bin",          lower = 255,     upper = 1023) 
  ), 
  minimize = FALSE 
) 
 
des = generateDesign(n=length(getParamSet(obj.fun)$pars)+1, # the number 
of experiments cannot equal the number of variables therefore to increase 
computation time, we are adding 1 to the total number of hyperparameters. 
                     par.set = getParamSet(obj.fun),  
                     fun = lhs::randomLHS)  ## . If no design is given by 
the user, mlrMBO will generate a maximin Latin Hypercube Design of size 4 
times the number of the black-box function's parameters. 
 
control = makeMBOControl() 
control = setMBOControlTermination(control, iters = 100) # number of 
Bayesian iterations 

Step 6. Tune the hyperparameters with Bayesian optimization and 5-fold cross-validation on the training

data

results = mbo(fun = obj.fun,  
              design = des,   
              control = control,  
              show.info = TRUE) 

Step 7. Save the results to the output file

save(results, file = "2021_xgb_cv_results_nonimputed.RData") 

Points to consider



2-implementation-guidance.md 8/27/2021

82 / 198

�. Benchmark tests should be run on a fewer number of iterations to gauge the run-time per iteration.

Hyperparameter tuning in a model with a large hyperparameter space, such as for gradient boosted

decision trees, can be computationally and time intensive. This approach allows the user to estimate

the time to completion for the hyperparameter tuning script.

�. Different AUC evaluation metrics can be chosen to determine the optimal set of hyperparameters,

such as optimizing on precision-recall (PR) AUC or model calibration. The decision for the metric on

which to optimize should be made in conjunction with clinical experts and depend on the goals of the

model or study.

6.3.1.3 Final XGBoost model for the non-imputed dataset

Steps for running the 2_xgb_nonimputed_final_model.R script

The final model is trained on the training subsets (0-6) of all 5 sets of non-imputed data using the optimal

hyperparameters from hyperparameter tuning. The final model is evaluated on the testing subsets (7-9) of

all 5 sets of non-imputed data using the ROC AUC as well as on the confusion matrix (true positives, false

positives, true negatives, and false negatives) and associated model evaluation metrics (sensitivity,

specificity, positive predictive value, positive likelihood ratio, and F1 score) at 0.1-0.5 thresholds.

Input:

universe.RData 
2021_xgb_cv_results_nonimputed.RData 

Output:

[date]_xgbResults_onehot_nonimp.csv 
2021_xgb_nonimputed_feature_importance.RData 
2021_xgb_nonimputed_y_proba.csv 
2021_nonimputed_predictions.xlsx 
2021_xgbResults_nonimputed.csv 

Step 1. Load the libraries

library(xgboost) 
library(sqldf) 
library(dplyr) 
library(tidyr) 
library(magrittr) 
library(smoof) 
library(mlrMBO)  # for bayesian optimisation   
library(skimr) # for summarising databases 
library(purrr) # to evaluate the loglikelihood of each parameter set in 
the random grid search 
library(DiceKriging) 
library(rgenoud) 



2-implementation-guidance.md 8/27/2021

83 / 198

library(here) 
library(data.table) 
library(mltools) #data.table and mltools are needed for "one_hot" function 
library(readr)  #read rds 

Step 2. Load the one-hot encoded data and split the training subsets (0-6) from the test subsets (7-9) and

separate dependent variable and non-feature columns used for identification or subsetting.

load("universe.RData") 
 
depvar = "died_in_90" 
 
trainsubsets = c(0,1,2,3,4,5,6) 
testsubsets = c(7,8,9) 
 
rhscols = setdiff(names(universe), c("usrds_id", "subset", "died_in_90")) 
 
train_onc=universe %>% filter(subset %in% trainsubsets) %>% 
as.data.frame() 
train_onc = train_onc[order(train_onc$usrds_id),] 
 
test_onc=universe %>% filter(subset %in% testsubsets) %>% as.data.frame() 
test_onc = test_onc[order(test_onc$usrds_id),] 

Step 3. Set the train and test datasets in the matrix format

dtrain <-xgb.DMatrix(as.matrix(train_onc[, rhscols]), label = train_onc[, 
depvar]) 
dtest <-xgb.DMatrix(as.matrix(test_onc[, rhscols]), label = test_onc[, 
depvar]) 
 

Step 4. Set the seed and load in the optimal hyperparameters identified during hyperparameter tuning

set.seed(297) 
 
load("./roc_auc/2021_xgb_cv_results_nonimputed.RData") 
 
xeta= results$x[['eta']] 
xgamma= results$x[['gamma']] 
xlambda= results$x[['lambda']] 
xalpha= results$x[['alpha']] 
xmax_depth= results$x[['max_depth']] 
xmin_child_weight= results$x[['min_child_weight']] 
xnround=results$x[['nround']] 
xsubsample= results$x[['subsample']] 
xcolsample_bytree= results$x[['colsample_bytree']] 



2-implementation-guidance.md 8/27/2021

84 / 198

xmax_bin=results$x[['max_bin']] 
 
scenarios = as.data.frame( 
  rbind( 
    c(xalpha, xcolsample_bytree, xeta, xgamma, xlambda, xmax_bin, 
xmax_depth, xmin_child_weight, xnround, xsubsample) 
  )) 
names(scenarios)=c("alpha","colsample_bytree","eta","gamma","lambda","max_
bin","max_depth", 
                   "min_child_weight","rounds","subsample") 
 
scenarios$inx = 1:dim(scenarios)[1] 
 
watchlist <- list(eval = dtest, train = dtrain) 
 
attr(dtrain, 'label') <- getinfo(dtrain, 'label') 
dy = NULL 
 
for (i in scenarios$inx) { 
  s = scenarios[scenarios$inx == i, ] 
   
  param <- 
    list( 
      max_depth = s$max_depth, 
      eta = s$eta, 
      nthread = 16, 
      verbosity = 0, 
      gamma = s$gamma, 
      lambda = s$lambda, 
      alpha = s$alpha, 
      maximize = TRUE, 
      tree_method = "hist", 
      max_bin = s$max_bin, 
      min_child_weight=s$min_child_weight, 
      eval_metric = "auc", 
      colsample_bytree=s$colsample_bytree, 
      subsample=s$subsample, 
      scale_pos_weight=sqrt(12), 
      objective = "binary:logistic" 
    ) 

Step 5. Set the seed and run the final non-imputed XGBooost model

set.seed(297) 
starttime = proc.time()[3] 
fit <- 
  xgb.train( 
    param, 
    dtrain, 
    s$rounds, 
    # nthread=16, 
    watchlist, 



2-implementation-guidance.md 8/27/2021

85 / 198

    maximize = TRUE, 
    early_stopping_rounds = 15, 
    verbose = 1 
  ) 

Step 6: Obtain feature importance and save the file

feature_imp = xgb.importance(fit$feature_names, 
                             model = fit) 
 
save(feature_imp, file = 
"./roc_auc/2021_xgb_nonimputed_feature_importance.RData") 

Step 7. Save the predictions

dx = as.data.frame(cbind(predict(fit, newdata = dtest), 
as.vector(getinfo(dtest, "label")))) 
names(dx)[1:2] = c("score", "y") 
dx$usrds_id = test_onc$usrds_id 
 
write.csv(dx,file="./roc_auc/2021_xgb_nonimputed_y_proba.csv") 
 
openxlsx::write.xlsx(as.data.frame(dx), file =  
"./roc_auc/2021_nonimputed_predictions.xlsx", 
                     sheetName='Sheet1', row.names=FALSE,showNA = F)   
 

Step 8. Calculate the confusion matrix by each threshold value

outdata = as.data.frame(seq(0, .99, .01)) 
names(outdata) = "bin" 
 
above_thresh = sqldf( 
  "select a.bin as threshold, sum(b.y) as tp, count(b.y) as detections 
  from outdata a 
  left join dx b on a.bin<=b.score 
  group by a.bin 
  order by a.bin desc" 
) 
 
below_thresh = sqldf( 
  "select a.bin as threshold, sum(b.y) as fn, count(b.y) as nondetections 
  from outdata a 
  left join dx b on a.bin>b.score 
  group by a.bin 
  order by a.bin desc" 
) 



2-implementation-guidance.md 8/27/2021

86 / 198

 
perfdata = above_thresh %>% left_join(below_thresh, by = c("threshold")) 
perfdata$tp = replace_na(perfdata$tp, 0) 
perfdata$fn = replace_na(perfdata$fn, 0) 
 
perfdata = perfdata %>% mutate( 
  fp = detections - tp, 
  tn = nondetections - fn, 
  sensitivity = tp / (tp + fn), 
  specificity = tn / (fp + tn), 
  fpr = 1 - specificity, 
  tpr = sensitivity, 
  LR = sensitivity / (1 - specificity), 
  ppv = tp / detections, 
  npv = tn / (tn + fn) 
) 
 
perfdata$iter = i 
 
perfdata$durationinsecs = durationinsecs 
 
replace = T) > sample(neg.scores, 7000, replace = T)) 
perfdata$auc_xgb_test = max(fit$evaluation_log$eval_auc) 
perfdata$auc_xgb_train = max(fit$evaluation_log$train_auc) 
 
dy = as.data.frame(rbind(dy, perfdata)) 
 
print(paste0("Finished iteration ", i, " auc_tim_test: ", 
max(perfdata$auc_xgb_test, " Duration ", durationinsecs))) 
} 
 
dy = dy %>% mutate( 
accuracy = (tp + tn) / (tp + tn + fp + fn), 
f1_score = 2 * ppv * sensitivity / (ppv + sensitivity) 
) 

Step 9. Save the results file

write.csv(dy,file="./roc_auc/2021_xgbResults_nonimputed.csv") 

6.3.1.4 Calibration

The calibration curve shows the reliability of the model by each prediction score category, the number of

patients that fall into each category, and the proportion of patients in each category who actually died in the

first 90 days following dialysis initiation.

Steps for running the 3_xgb_nonimputed_calibration.ipynb script

Input:



2-implementation-guidance.md 8/27/2021

87 / 198

2021_xgb_nonimputed_y_proba.csv 
medexpreesrd 

Output:

xgb_nonimputed_calibrated.pickle 
y_calibrated_xgb_nonimputed.pickle 

Step 1. Import libraries

import pandas as pd 
import numpy as np 
import pickle 
 
import sys 
#path to the functions file 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
# import custom functions 
from plot_functions import onc_plot_calibration_curve 
from calibrate_onc import calibrate_onc 
 
#connect to posgres database 
import psycopg2 
import sqlalchemy 
from sqlalchemy import create_engine 
 
con = create_engine('postgresql://username:password@location/dbname') 

Step 2. Load results from the XGBoost non-imputed model

pred_df = pd.read_csv('./roc_auc/2021_xgb_nonimputed_y_proba.csv') 

Step 3. Plot the calibration of the original model. This function onc_plot_calibration_curve is located in

the /onc_functions/plot_functions.py file.

def onc_plot_calibration_curve(y_true, y_proba, label, filename): 
     
    #calculate numbers to plot 
    clf_score = brier_score_loss(y_true, y_proba, pos_label=1) 
    fraction_of_positives, mean_predicted_value = \ 
                calibration_curve(y_true, y_proba, n_bins=10) 
    # set up plot 
    fig1 = plt.figure(1, figsize=(10,10))#,dpi=400)     



2-implementation-guidance.md 8/27/2021

88 / 198

    ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) 
    ax2 = plt.subplot2grid((3, 1), (2, 0)) 
     
    #plot the reference for a prefectly calibrated model 
    ax1.plot([0, 1], [0, 1], "k:", label="Reference Line") 
     
    # plot the calibration curve 
    ax1.plot(mean_predicted_value, fraction_of_positives, "ks-", 
                    label=label) 
     
    # plot histogram of predicted values 
    ax2.hist(y_proba, range=(0, 1), bins=10, label=label, 
                 histtype="step", lw=2) 
     
    # set axes and other figure parameters 
    ax1.set_ylabel("Observed Event Rate") 
    ax1.set_xlabel("Predicted Event Rate") 
    ax1.set_ylim([-0.05, 1.05]) 
    ax1.legend(loc="lower right") 
     
    ax2.set_xlabel("Mean predicted value") 
    ax2.set_ylabel("Count") 
    ax2.legend(loc="upper right", ncol=1) 
     
    plt.rc('axes', labelsize=22)    # fontsize of the x and y labels 
    plt.rc('xtick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('ytick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('legend', fontsize=20)    # legend fontsize 
    #save figure resolution 
    plt.savefig(filename + ".png",  dpi=400,  transparent=True) 
    plt.show() 

Run the function above.

onc_plot_calibration_curve( 
                          y_true=data.y,  
                          y_proba=data.score,  
                          label='XGBoost non-imputed', 
                          
filename='./roc_auc/xgb_nonimputed_orig_calibration') 



2-implementation-guidance.md 8/27/2021

89 / 198

The XGBoost model can be calibrated by training an isotonic regression on a portion of the testing set.

(Model calibration is performed as probabilities of death in the first 90 days are more informative and useful

for clinicians than a simple binary prediction. In order to produce valid probability estimates, predicted

events rates should track observed rates across the full range of predicted risk.)

Step 4. Load the subset for each ID:

df = pd.read_sql_query(''' 
SELECT   usrds_id, subset FROM medxpreesrd;''', con) 

Merge the subset details with the predictions.

data = pd.merge(pred_df, df, how="left", on="usrds_id") 

The next steps are inside function calibrate_onc located in the /onc_functions/calibrate_onc.py file.



2-implementation-guidance.md 8/27/2021

90 / 198

Step 5. Split the predictions from the test set (how we evaluated the model) into a test/train for the

calibration (isotonic regression classifier). Split test data (subsets 7-9) into new train (7-8)/test (9) sets

calibration_train_set = data[((data.subset==7)|(data.subset==8))].copy() 
calibration_test_set = data[data.subset==9].copy() 

Step 6. Define the calibration model

ir = IsotonicRegression(out_of_bounds="clip") 

Step 7. Fit the model to the XGBoost predictions from the (new) training set

ir.fit(calibration_train_set.score, calibration_train_set.y) 

Step 8. Evaluate the model using the (new) test set

p_calibrated = ir.transform(calibration_test_set.score)  
calibration_test_set['p_calibrated'] = p_calibrated 

Step 9. Save

with open(path + 'model_calibrated_' + model_name + '.pickle', 'wb') as 
picklefile:   
            pickle.dump(ir,picklefile) 
     
with open(path + 'y_calibrated_' + model_name + '.pickle', 'wb') as 
picklefile:   
            pickle.dump(calibration_test_set, picklefile) 

Step 10. Print the scores from the original and calibrated model. The function print_calibrated_results is

found in the /onc_functions/calibrate_onc.py file.

def print_calibrated_results(y_true, y_pred, y_calibrated): 
    '''print scores for pre and post calibration''' 
     
    acc = accuracy_score(y_true, np.round(y_pred)) 
    acc_calibrated = accuracy_score(y_true, np.round(y_calibrated )) 
    print ("accuracy - original/calibrated:", acc, "/", acc_calibrated) 
         
    auc = roc_auc_score(y_true, y_pred) 
    auc_calibrated = roc_auc_score(y_true, y_calibrated) 



2-implementation-guidance.md 8/27/2021

91 / 198

    print ("ROC AUC - original/calibrated:     ", auc, "/", 
auc_calibrated) 
     
    pr = average_precision_score(y_true, y_pred) 
    pr_calibrated = average_precision_score(y_true, y_calibrated ) 
    print ("avg precision - original/calibrated:", pr, "/", pr_calibrated) 
     
    clf_score = brier_score_loss(y_true, y_calibrated, pos_label=1) 
    print("\tBrier: %1.3f" % (clf_score)) 

Run these 2 calibration functions

calibrated_results = calibrate_onc(data, path='./roc_auc/', 
model_name='xgb_nonimputed') 

6.3.1.5 Plotting calibrated results

Steps for running the 4_xgb_nonimputed_calibrated_plots.ipynb script

Input:

y_calibrated_xgb_nonimputed.pickle 

Output:

xgb_nonimputed_calibration.png 
xgb_nonimputed_mortality_bar.png 
xgb_nonimputed_roc_auc_bw.png 
2021_xgb_nonimputed_calibrated_confusion_matrix.csv 

Step 1. Import libraries

import pandas as pd 
import numpy as np 
import pickle 
 
import sys 
#add the absolute path to the onc_functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
 
#import custom plotting functions 
from plot_functions import (onc_plot_calibration_curve, 
                            onc_calc_cm,  
                            onc_plot_roc,  



2-implementation-guidance.md 8/27/2021

92 / 198

                            onc_plot_precision_recall,  
                            onc_plot_risk,  
                            onc_plot_roc_no_threshold) 

Step 2. Load results from the calibrated model

with open('./roc_auc/y_calibrated_xgb_nonimputed.pickle, 'rb') as 
picklefile:   
            calibrated_results = pickle.load(picklefile) 

Step 3. Plot the calibration curve of the calibrated model using the same onc_plot_calibration_curve

function from /onc_functions/plot_functions.py

onc_plot_calibration_curve( 
                y_true=calibrated_results.y,  
                y_proba=calibrated_results.p_calibrated,  
                label='XGBoost_non-imputed calibrated', 
                filename='./roc_auc/xgb_nonimputed_calibrated') 

Step 4. Plot the Risk of the calibrated model. This function onc_plot_risk is located and imported from

/onc_functions/plot_functions.py



2-implementation-guidance.md 8/27/2021

93 / 198

def onc_plot_risk(y_true, y_proba, label, filename): 
    # calculate values for plot 
    fraction_of_positives, mean_predicted_value = \ 
                calibration_curve(y_true, y_proba, n_bins=10) 
     
    # set up figure params 
    fig1 = plt.figure(1, figsize=(12,30),dpi=400) 
    ax1 = plt.subplot2grid((7, 1), (0, 0), rowspan=2) 
     
    # bar plot 
    xs = np.arange(len(fraction_of_positives)) 
    ax1.bar(xs, mean_predicted_value, color='k', width = 0.25, 
label=label) 
    ax1.bar(xs+.25, fraction_of_positives, color='gray', width = 0.25, 
label='Observed') 
     
    #more figure settings 
    plt.xticks(xs, np.arange(1, len(xs)+1, 1)) 
    ax1.set_ylabel("Mortality Rate") 
    ax1.set_xlabel("Decile of Predicted Mortality Risk") 
    ax1.legend(loc="upper left") 
    plt.rc('axes', labelsize=22)    # fontsize of the x and y labels 
    plt.rc('xtick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('ytick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('legend', fontsize=20)    # legend fontsize 
    #save plot  
    plt.savefig(filename + ".png",  dpi=400,  transparent=True) 

onc_plot_risk( 
  calibrated_results.y, 
  calibrated_results.p_calibrated,  
  label='Predicted (XGBoost Non-Imputed)', 
  path='./roc_auc/',  
  filename='xgb_nonimputed_mortality_bar') 



2-implementation-guidance.md 8/27/2021

94 / 198

Step 5. Plot the ROC AUC of the calibrated model. This function onc_plot_roc is located and imported

from /onc_functions/plot_functions.py

def onc_plot_roc(y_true, y_pred, model_name, **kwargs): 
    '''  
    Plot the ROC AUC and return the test ROC AUC results. 
    INPUT: y_true, y_pred, model_name, **kwargs 
    ''' 
 
    #calc values for plot 
    false_positives, true_positives, threshold = roc_curve(y_true, y_pred) 
    c_roc_auc_score = auc(false_positives, true_positives) 
     
    #set figure params 
    fig1 = plt.figure(1, figsize=(12,30),dpi=400) 
    ax1 = plt.subplot2grid((7, 1), (0, 0), rowspan=2) 
     
    #plot reference line for chance 
    ax1.plot([0, 1], [0, 1], linestyle='--', lw=2, color='gray', 
        label='Chance', alpha=.8) 
     
    # plot AUC ROC 
    ax1.plot(false_positives, true_positives,  
        label=r'ROC (AUC = %0.3f)' % (c_roc_auc_score), 
        lw=2, alpha=.8, color = 'k') 
     
    # additional figure params 
    ax1.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05],) 



2-implementation-guidance.md 8/27/2021

95 / 198

    ax1.legend(loc="lower right") 
    plt.xlabel('1-Specificity') 
    plt.ylabel('Sensitivity') 
    plt.rc('axes', labelsize=22)    # fontsize of the x and y labels 
    plt.rc('xtick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('ytick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('legend', fontsize=20)    # legend fontsize 
    # save plot 
    plt.savefig(model_name + "_calibrated_roc_auc_bw.png",  dpi=400,  
transparent=True) 
    plt.show() 

onc_plot_roc( 
          calibrated_results.y, 
          calibrated_results.p_calibrated,  
          model_name='xgb_nonimputed'); 

Step 6. Save the performance metrics at multiple thresholds. The following function is imported from

/onc_functions/plot_functions.py

def onc_calc_cm(y_true, y_predictions, range_probas=[0.1,0.5]): 
    ''' 
    Plot the confusion matrix and scores for multiple thresholds 
    ''' 



2-implementation-guidance.md 8/27/2021

96 / 198

    df = pd.DataFrame(index = range_probas, 
                      columns=['threshold','sensitivity','specificity', 
                               
'likelihood_ratio_neg','likelihood_ratio_pos', 
                               
'tp','fp','tn','fn','total_survived','total_deceased',]) 
    for proba_threshold in range_probas: 
         
        cm = confusion_matrix(y_true, y_predictions > proba_threshold) 
        tn = cm[0][0] 
        fp = cm[0][1] 
         
        sensitivity = recall_score(y_true, y_predictions > 
proba_threshold) 
        specificity = tn / (tn + fp) 
 
        df.loc[proba_threshold, "threshold"] = proba_threshold 
        df.loc[proba_threshold,"sensitivity"] = sensitivity 
        df.loc[proba_threshold, "specificity"] = specificity 
        df.loc[proba_threshold, "likelihood_ratio_neg"] = (1-
sensitivity)/specificity 
        df.loc[proba_threshold, "likelihood_ratio_pos"] = sensitivity/(1-
specificity) 
        df.loc[proba_threshold, "tp"] = cm[1][1] 
        df.loc[proba_threshold, "fp"] = fp 
        df.loc[proba_threshold, "tn"] = tn 
        df.loc[proba_threshold, "fn"] = cm[1][0] 
        df.loc[proba_threshold, "total_survived"] = np.sum(cm[0]) 
        df.loc[proba_threshold, "total_deceased"] = np.sum(cm[1]) 
    return df 

cm = onc_calc_cm( 
              calibrated_results.y,  
              calibrated_results.p_calibrated,  
              range_probas=[.10,.20, .30, .40, .50]) 
cm.to_csv('./roc_auc/2021_xgb_nonimputed_calibrated_confusion_matrix.csv') 

6.3.1.6 Saving data for the fairness assessment

Steps for running the 5_xgb_fairness_assess_get_data.ipynb script



2-implementation-guidance.md 8/27/2021

97 / 198

Get the columns of data required to compute fairness assessment and save the file.

inc_age = age 
sex 
dialtyp=type of dialysis 
race 
hispanic 

Input:

`medexpressesrd` table from Postgres 

Output:

complete_nonimputed.pickle 

Step 1. Import the libraries

import psycopg2 
import sqlalchemy 
from sqlalchemy import create_engine 
 
import numpy as np 
import pandas as pd 
import sys 
import pickle 

Step 2. Connect to the Postgres database

The credentials required to connect to the database should be inserted in the following snippet of code

below:

con = create_engine('postgresql://username:password@location/dbname') 

Step 3. Import the columns required for the fairness assessment from the database

df = pd.read_sql_query('''SELECT   usrds_id, died_in_90, inc_age, sex, 
dialtyp, race, hispanic, subset FROM medxpreesrd;''', con) 

Step 4. Save the file



2-implementation-guidance.md 8/27/2021

98 / 198

with open('complete_fairness_data.pickle', 'wb') as picklefile:   
    pickle.dump(df, picklefile) 

6.3.1.7 Fairness assessment

ML models can perform differently for different categories of patients, so the non-imputed XGBoost model

was assessed for fairness, or how well the model performs for each category of interest (demographics—

sex, race, and age—as well as initial dialysis modality). Age were binned into the following categories based

on clinician input and an example in literature: 18-25, 26-35, 36-45, 46-55, 56-65, 66-75, 76-85, 86+. The

USRDS predefined categories for race, sex, and dialysis modality were used for the fairness assessment.

Steps for running the 6_xgb_nonimputed_fairness.ipynb script

Calculations for specific groups of patients to assess the fairness of the final model for all patients in the

test subsets. Note: Fairness assessment is run on the non-calibrated model results.

Input:

complete_nonimputed.pickle 
2021_xgb_nonimputed_y_proba.csv 

Output:

2021_xgb_nonimputed_fairness.csv 

Step 1. Import libraries

import numpy as np 
import pandas as pd 
import pickle 
  
import datetime 
dte = datetime.datetime.now() 
dte = dte.strftime("%Y%m%d") 
 
# import custom functions 
import sys 
#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
 
from fairness import get_fairness_assessment 



2-implementation-guidance.md 8/27/2021

99 / 198

Step 2. Write the function that calculates AUC and the confusion matrix from the model prediction scores.

This function is located and imported from the /onc_functions/fairness.py file.

Step 3. Load results from the model and fairness details

pred_df = pd.read_csv('./roc_auc/2021_xgb_nonimputed_y_proba.csv') 
 
with open('../complete_fairness_data.pickle', 'rb') as f: 

def get_fairness_assessment(df, y_proba_col_name, y_true_col_name): 
     
    #turn the continuous age variable into age categories 
    df['agegroup'] = pd.cut(df.inc_age,  
                           bins=[17, 25, 35, 45, 55, 65, 75, 85, 90],  
                           labels=[1, 2, 3, 4, 5, 6, 7, 8]) 
     
    df = df.drop(columns=['inc_age']) 
     
    #replace NaNs with a large number that does not appear in the data, 
effectively creating another category for missing values 
    df.loc[:,['race','dialtyp','hispanic']] = df.loc[:,
['race','dialtyp','hispanic']].fillna(100.0, axis=1).copy() 
     
    #Identify the cols for the fairness assessment 
    fairness_cols = ['agegroup', 'sex','dialtyp', 'race','hispanic'] 
     
    #loop through all categories and values to get counts, auc, and 
confusion matrix 
    rows_list = [] 
    for col in fairness_cols: 
        for name, c in df.groupby(col): 
            fairness_dict = {} 
            fairness_dict['Feature'] = col 
            fairness_dict['Value'] = name 
            fairness_dict['Count'] = c.shape[0] 
             
            fairness_dict['AUC'] = roc_auc_score(c[y_true_col_name], 
c[y_proba_col_name]) 
            tn, fp, fn, tp = confusion_matrix(y_true = c[y_true_col_name],  
                                              y_pred = 
np.where(c[y_proba_col_name] >= 0.5, 1, 0)).ravel() 
            fairness_dict['TN'] = tn 
            fairness_dict['FP'] = fp 
            fairness_dict['FN'] = fn 
            fairness_dict['TP'] = tp 
            rows_list.append(fairness_dict) 
     
    #convert results from a list to a dataframe 
    df_fairness = pd.DataFrame(rows_list) 
    return df_fairness 



2-implementation-guidance.md 8/27/2021

100 / 198

        dataset = pickle.load(f) 
  
# merge model results with fairness details 
data = pred_df.merge(dataset, how='left', on=['usrds_id']) 

Step 4. Calculate fairness assessment

fairness = get_fairness_assessment(data, 
                                  y_proba_col_name='score', 
                                  y_true_col_name='died_in_90') 

Step 5. Save results

fairness.to_csv('./roc_results/' + str(dte) + 
'_xgb_nonimputed_fairness.csv') 



2-implementation-guidance.md 8/27/2021

101 / 198

Points to consider

Performing the fairness assessment on the categories of interest gives additional insight into how the model

performs by different patient categories of interest (by demographics, etc.). Future researchers should

perform fairness assessments to better evaluate model performance, especially for models that may be

deployed in a clinical setting. Other methods of assessing fairness include evaluating true positives,

sensitivity, positive predictive value, etc. at various threshold across the different groups of interest, which

would allow selection of a threshold that balances model performance across the groups of interest.

6.3.1.8 Risk assessment

Steps for running the 7_xgb_nonimputed_risk_categories.ipynb script

Note: Risk assessment is run on the non-calibrated model results

Input:

complete_fairness_data.pickle 
2021_xgb_nonimputed_y_proba.csv 

Output:

2021_xgb_nonimputed_risk_cat.csv 

Step 1. Import libraries



2-implementation-guidance.md 8/27/2021

102 / 198

import numpy as np 
import pandas as pd 
import pickle 
 
import sys 
#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
from risk import get_risk_categories 
 
print('python-' + sys.version) 
import datetime 
dte = datetime.datetime.now() 
dte = dte.strftime("%Y%m%d") 

Step 2. Import the details from the fairness assessment

with open('../complete_fairness_data.pickle', 'rb') as f: 
        dataset = pickle.load(f) 

Step 3. Import the pooled results from the model

pred_df = pd.read_csv('./roc_auc/2021_xgb_nonimputed_y_proba.csv') 

Step 4. Merge the details with the results

data = pred_df.merge(dataset, on=['usrds_id']) 

Step 5. Calculate risk. The function get_risk_categories is imported from the /onc_functions/risk.py file.

def get_risk_categories(dataset, y_proba_col_name, y_true_col_name): 
     
    test_x_pd = dataset[dataset.subset > 6].copy().sort_values(by = 
'usrds_id') 
    del dataset 
     
    df = test_x_pd.loc[:,[y_true_col_name,y_proba_col_name]] 
     
    #construct the risk categories from the predicted score 
    df['risk_categories'] = pd.cut(df[y_proba_col_name],         
                                   bins=[-0.1, 0.09, 0.19, 0.29, 0.39, 
0.49, 0.59, 0.69, 0.79, 0.89, 0.99], 
                                   labels=['0-0.09', '0.1-0.19', '0.2-
0.29', '0.3-0.39', '0.4-0.49', 



2-implementation-guidance.md 8/27/2021

103 / 198

                                           '0.5-0.59','0.6-0.69','0.7-
0.79','0.8-0.89','0.9-0.99']) 
     
    #loop through all the categories to get the predicted score 
    risk_list = [] 
    for name, c in df.groupby('risk_categories'): 
        risk_dict = {} 
        risk_dict['Risk Category'] = name 
        risk_dict['Count'] = c[y_true_col_name].shape[0] 
        risk_dict['Count Died in 90'] = c[y_true_col_name].sum() 
        risk_dict['Count Survived'] = c[y_true_col_name].shape[0]-
c[y_true_col_name].sum() 
        risk_dict['Percent Died in 90'] = 
c[y_true_col_name].sum()/c[y_true_col_name].shape[0] 
         
        risk_list.append(risk_dict) 
     
    df_risk = pd.DataFrame(risk_list) 
    return df_risk 

Run the function above

risk_cat = get_risk_categories(data, 
                               y_proba_col_name='score', 
                               y_true_col_name='died_in_90') 

Step 6. Save

risk_cat.to_csv('./results/' + str(dte) + '_xgb_nonimputed_risk_cat.csv') 



2-implementation-guidance.md 8/27/2021

104 / 198

6.3.2 Imputed XGBoost Model

All results for the imputed XGBoost model are located in the /roc_results/ directory.

Environment

The environment used for the Imputed XGBoost model was purchased on Amazon Web Services (AWS):

Name: m5.12xlarge 
vCPU: 48 
GPU: 0 
Cores: 24 
Threads per core: 2 
Architecture: x86_64 
Memory: 192 GB 
Operating System: Linux (Ubuntu 20.04 Focal Fossa) 
Network Performance: 10 GB 
Zone: US govcloud west 

Points to consider

Hyperparameter tuning for the imputed XGBoost model required an instance with more than 65 GB of

memory. When purchasing more memory we decided to upgrade the number of cores which helped to

improve the computation time. The model utilizes parallel processing which used all available cores/CPUs. It

took approximately 5 days to run the entire code for the imputed XGBoost model.

6.3.2.1 Pre-processing the training dataset



2-implementation-guidance.md 8/27/2021

105 / 198

The data pre-processing for the imputed XGBoost model is similar to the steps for the non-imputed

XGBoost model--all categorical variables were one-hot encoded into dummy variables that are binary

indicators of each factor in the categorical features (e.g., the sex feature will be turned into 3 columns:

sex_1 (male), sex_2 (female), sex_3 (unknown)). An additional step is required to read in the 5 imputed

datasets micecomplete_pmm and merge with the medxpreesrd data.

Steps for running the 0_xgb_imputed_preprocess.R script

�. Load medexpressesrd table from Postgres and imputed data micecomplete_pmm.
�. Merge to create our 5 datasets. Left join medexpreesrd and the first set of imputations, keeping

imputed cols from imp1, not medxpreesrd.
�. Categorical features get one-hot encoded.

Input: medexpressesrd and micecomplete_pmm tables from Postgres

Output: universe.RData (data ready for modeling)

Step 1. Load the libraries

library(RPostgres) #Interface to PostgreSQL 
library(DBI) #R database interface 
library(dplyr) 
library(tidyr)  
library(skimr) #Summarizing databases 
library(data.table) 
library(mltools) #data.table and mltools are needed for the "one_hot" 
function 
library(readr)  #read rds 

Step 2. Load the list of categorical variables

source(file.path("~","ONC_xgboost","category_variables.R")) 

Step 3. Connect to the Postgres database and load the medexpressesrd table as the variable universe.
The credentials required to connect to the database should be inserted in the following snippet of code

below:

con <- dbConnect( 
  RPostgres::Postgres(), 
  dbname = '', 
  host = '', 
  port = '', 
  user = '', 
  password = '') 

The data from the database is loaded into R as the variable universe.



2-implementation-guidance.md 8/27/2021

106 / 198

universe=dbGetQuery( 
  con, 
  "SELECT * 
  FROM medxpreesrd") 

Step 4. Load the micecomplete_pmm table as the variable imputations_pmm

imputations_pmm = dbGetQuery( 
  con, 
  " 
  SELECT *, row_number() OVER(PARTITION BY usrds_id) AS impnum 
  FROM micecomplete_pmm 
  ") 

Step 5. Left join the medxpreesrd and imputations_pmm tables and keep only the imputed columns from

imputations_pmm

universe = left_join( 
  medxpreesrd %>% 
    select(-c("height", "weight", "bmi", "sercr", "album", "gfr_epi", 
"heglb", "cdtype")), 
  imputations_pmm, 
  by = c("usrds_id", "subset") 
) 

Step 6. Set numeric features as numeric type

num_vars = setdiff(names(universe) , categoryVars) 
 
continuous_vars = c("height", "weight", "bmi", "sercr", "album", 
"gfr_epi", "heglb") 
 
num_vars = setdiff(num_vars, continuous_vars) 
for (cc in num_vars) { 
  universe[,cc]=as.numeric(universe[,cc]) 
} 

Step 7. Separate categorical features from continuous and numeric to one-hot encode

for (c in categoryVars) { 
  universe[,c]=as.factor(universe[,c]) 
} 
universe=data.table(universe) 



2-implementation-guidance.md 8/27/2021

107 / 198

universe=one_hot(as.data.table(universe), naCols=TRUE, dropUnusedLevels = 
TRUE) 

Step 6. Save the pre-processed data

save(universe, file="universe.RData") 

Points to consider

One-hot encoding the categorical variables is preferable to numeric encoding (casting categorical

encodings as numeric) as it is a better numeric representation of ordinal variables. However, one-hot

encoding increases the number of variables in the training dataset which increases run time and features

with more than 5 categories are typically not one-hot encoded for this reason.

6.3.2.2 Hyperparameter tuning for each imputed dataset

This section tunes the hyperparameters using Bayesian optimization and 5-fold cross validation on each

imputed dataset and returns the optimal hyperparameters for each imputed dataset.

Steps for running the 1_xgb_imputed_get_hyperparams.R script

This file will run 100 Bayesian models that will:

�. Result in a new range of hyperparameters.

�. Set the dependent variable to died_in_90.

�. Drop non-feature and dependent variable cols ("usrds_id", "subset","died_in_90")

�. Create the train and test sets based on the following "subset" values

trainsubsets = c(0,1,2,3,4,5,6) 

Input:

universe.RData 

Output:

[date]_xgb_results_imputed_1.RData 

Step 1. Load the libraries

library(xgboost) 
library(dplyr) 



2-implementation-guidance.md 8/27/2021

108 / 198

library(tidyr) 
library(magrittr) 
library(smoof) 
library(mlrMBO)  # for bayesian optimisation   
library(skimr) # for summarising databases 
library(purrr) # to evaluate the loglikelihood of each parameter set in 
the random grid search 
library(DiceKriging) 
library(rgenoud) 
library(data.table) 
library(mltools) #data.table and mltools are needed for "one_hot" function 
library(readr)  #read rds 
library(rBayesianOptimization) 
library(Matrix) 

Step 2. Load the one hot encoded data and keep only the training subsets (1-6).

load('universe.RData') 
 
depvar = "died_in_90" 
trainsubsets = c(0,1,2,3,4,5,6) 

Step 3. Initiate a list to hold the hyperparameter tuning results from each of the 5 imputed datasets

model_results <-list() 

Step 4. Loop through each imputation

for(i in 1:5){ 
---- 
} 

For each imputation perform the following steps:

Step 5. Set the training dataset

  train=universe %>%  
    filter(subset %in% trainsubsets, impnum == i) %>% as.data.frame() 

Step 6. Generate the list of indices for 5-fold cross validation

cv_folds = rBayesianOptimization::KFold(train[, depvar], # creating 5 fold 
validation 



2-implementation-guidance.md 8/27/2021

109 / 198

                                          nfolds= 5, 
                                          stratified = TRUE, 
                                          seed = 0) 

Step 7. Set the training dataset as numeric and prepare the training dataset as a matrix

train[] <- lapply(train, as.numeric) #force to numeric columns 
 
options(na.action='na.pass') 
trainm <- sparse.model.matrix(died_in_90 ~ ., data = train[, rhscols]) 
dtrain <- xgb.DMatrix(data = trainm, label=train[, depvar]) 

Step 8. Define the parameters for hyperparameter tuning

The hyperparameters that were selected for tuning and the ranges that were tuned were:

Parameter Range

Eta 0.001 - 0.8

Gamma 0 - 9

Lambda 1 -9

Alpha 0 - 9

Max Depth 2 - 10

Minimum Child Weight 1 - 5

Number of Rounds 10 - 500

Subsample 0.2 - 1

Column Sample by Tree 0.3 - 1

Maxiumum Bin 255 - 1023

Additional hyperparameters can be found at https://xgboost.readthedocs.io/en/latest/.

Parameters that were set include:

Scale_pos_weight as 3.5, which is the square root of the ratio of the negative class (survived the first

90 days of dialysis) and the positive class (died in the first 90 days of dialysis). This parameter

handles the class imbalance by weighting the minority class (died in the first 90 days of dialysis).

Number of iterations as 100. Bayesian optimization will run through 100 iterations to identify the

optimal hyperparameters.

Early stopping rounds to 15, as evaluated using the highest ROC AUC. This parameter ends model

training if the ROC AUC has not increased in 15 iterations.



2-implementation-guidance.md 8/27/2021

110 / 198

# Tune parameters --------------------------------------------------- 
obj.fun  <- smoof::makeSingleObjectiveFunction( 
  name = "xgb_cv_bayes", 
  fn =   function(x){ 
    set.seed(12345) 
    cv <- xgb.cv(params = list( 
      booster          = "gbtree", 
      scale_pos_weight = sqrt(12), 
      eta              = x["eta"], 
      max_depth        = x["max_depth"], 
      min_child_weight = x["min_child_weight"], 
      gamma            = x["gamma"], 
      lambda           = x["lambda"], 
      alpha            = x["alpha"], 
      subsample        = x["subsample"], 
      colsample_bytree = x["colsample_bytree"], 
      max_bin          = x["max_bin"], 
      objective        = 'binary:logistic',  
      eval_metric     = "auc", 
      tree_method     = "hist"), 
      data=dtrain, 
      nrounds = x["nround"],  
      folds =  cv_folds,  
      prediction = FALSE, 
      showsd = TRUE, 
      early_stopping_rounds = 15, 
      verbose = 1) 
     
    cv$evaluation_log[, max(test_auc_mean)] 
  }, 
  par.set = makeParamSet( 
    makeNumericParam("eta",              lower = 0.001, upper = 0.8), 
    makeNumericParam("gamma",            lower = 0,     upper = 9), 
    makeNumericParam("lambda",           lower = 1,     upper = 9), 
    makeNumericParam("alpha",            lower = 0,     upper = 9), 
    makeIntegerParam("max_depth",        lower = 2,      upper = 10), 
    makeIntegerParam("min_child_weight", lower = 1,      upper = 5), 
    makeIntegerParam("nround",           lower = 10,      upper = 500), 
    makeNumericParam("subsample",        lower = 0.2,   upper = 1), 
    makeNumericParam("colsample_bytree", lower = 0.3,   upper = 1), 
    makeIntegerParam("max_bin",          lower = 255,     upper = 1023) 
  ), 
  minimize = FALSE 
) 
 
des = generateDesign(n=length(getParamSet(obj.fun)$pars)+1, # the number 
of experiments cannot equal the number of variables therefore to increase 
computation time, we are adding 1 to the total number of hyperparameters. 
                     par.set = getParamSet(obj.fun),  
                     fun = lhs::randomLHS)  ## . If no design is given by 
the user, mlrMBO will generate a maximin Latin Hypercube Design of size 4 
times the number of the black-box function's parameters. 
 



2-implementation-guidance.md 8/27/2021

111 / 198

control = makeMBOControl() 
control = setMBOControlTermination(control, iters = 100) # number of 
Bayesian iterations 

Step 8. Tune the hyperparameters with Bayesian optimization and 5-fold cross-validation on the training

data

results = mbo(fun = obj.fun,  
              design = des,   
              control = control,  
              show.info = TRUE) 

Step 9. Save the results to the list model_results

model_results[[i]] <- results 

This is the end of the loop. To return the best hyperparameters for model i, use the following line of code

model_results[[i]]$x 

Step 10. Save the output to a file

save(model_results, file = "2021_xgb_results_imputed_1.RData") 

Points to consider

Bayesian optimization was used to narrow down the hyperparameter ranges to consider for a pooled

approach to hyperparameter tuning. Using Bayesian optimization to limit the hyperparameter space

reduced the time required to run a pooled approach for hyperparameter tuning for the imputed dataset.

6.3.2.3 Pooled Hyperparameter Tuning

This script runs a random cross validated search on this new range using a pooled approach for all 5

imputed datasets and takes the single set of hyperparameters from the best AUC and run it with the

validation data. The "best" single combination of hyperparameters resulting from this script was fed into 5

individual models for each imputed dataset resulting in 5 predictions averaged from each imputed dataset

that was used to compute AUC.

Steps for running the 2_xgb_imputed_gridsearch_cv.R script

Input:



2-implementation-guidance.md 8/27/2021

112 / 198

universe.RData 

Output:

2021_pooling_sample.RData 
2021_final_hp_results_random_grid_imputed.xlsx 
2021_final_hp_results_random_grid_imputed.RData 

Step 1. Load the libraries

library(pROC) 
library(rsample) 
library(xgboost) 
library(sqldf) 
library(dplyr) 
library(tidyr) 
library(magrittr) 
library(smoof) 
library(mlrMBO)  # for bayesian optimisation   
library(skimr) # for summarising databases 
library(purrr) # to evaluate the loglikelihood of each parameter set in 
the random grid search 
library(DiceKriging) 
library(rgenoud) 
library(data.table) 
library(mltools) #data.table and mltools are needed for "one_hot" function 
library(readr)  #read rds 
library(rBayesianOptimization) 
library(openxlsx) 
library(Matrix) 

Step 2. Load the one hot encoded data and keep only the training subsets (1-6).

load("~/universe.RData") 
depvar = "died_in_90" 
rhscols = setdiff(names(universe), c("usrds_id", "subset", "cdtype")) 
 
trainsubsets = c(0,1,2,3,4,5,6) 

Step 3. Set the seed and the hyperparameter grid from the narrowed ranges from Step 2

Set the seed.

set.seed(123)

25 iterations will be run for the pooled hyperparameter tuning approach.



2-implementation-guidance.md 8/27/2021

113 / 198

how_many_models <- 25

Set the updated ranges for each hyperparameter based on the results from Bayesian optimization and

randonly generate 25 values for each hyperparameter.

eta <-              data.frame(eta = runif(how_many_models,min = 
0.04852942, max = 0.08619335)) 
gamma <-            data.frame(gamma = runif(how_many_models,min = 
0.766442, max = 6.013658)) 
lambda <-           data.frame(lambda = runif(how_many_models,min = 
5.845102, max = 8.751962)) 
alpha <-            data.frame(alpha = runif(how_many_models,min = 
6.516213, max = 8.719468)) 
max_depth <-        data.frame(max_depth = sample(6:7, how_many_models, 
replace=TRUE)) 
min_child_weight <- data.frame(min_child_weight = sample(1:4, 
how_many_models, replace=TRUE)) 
nround <-          data.frame(nround = sample(419:499, how_many_models, 
replace=TRUE)) 
subsample <-        data.frame(subsample = runif(how_many_models,min = 
0.7314413, max = 0.8471972)) 
colsample_bytree <- data.frame(colsample_bytree = 
runif(how_many_models,min = 0.5921707, max = 0.8566342))   
max_bin <-          data.frame(max_bin = sample(529:972, how_many_models, 
replace=TRUE)) 

Initiate the hyperparameter grid.

random_grid <-eta %>% 
  bind_cols(gamma) %>% 
  bind_cols(lambda) %>% 
  bind_cols(alpha) %>% 
  bind_cols(max_depth) %>% 
  bind_cols(min_child_weight) %>% 
  bind_cols(nround)  %>%  
  bind_cols(subsample) %>% 
  bind_cols(colsample_bytree) %>% 
  bind_cols(max_bin) %>%as_tibble() 
 
 
df.params <- bind_rows(random_grid) %>% 
  mutate(rownum = row_number(), 
         model = row_number()) 
list_of_param_sets <- df.params %>% nest(-rownum) 
 
colnames(list_of_param_sets) <- c("model","hyperparamters") 

Step 4. Prepare the training dataset



2-implementation-guidance.md 8/27/2021

114 / 198

  filter(subset <=6 ) %>% as.data.frame() 

Step 5. Loop through each imputation

for(i in 1:5){ 
---- 
} 

For each imputation perform the following steps:

Step 6. Set the training dataset

train_onc=train_full %>%  
  filter(impnum == i) %>% as.data.frame() 

Step 7. Sort the training dataset by usrds_id

train_onc = train_onc[order(train_onc$usrds_id),] #We sort the data to 
make sure an usrsd_id will always end up in the training or validation 
regardless of which imputed dataset we are using 

Step 8. Remove columns containing all NAs

all_na <- function(x) any(!is.na(x)) #creating function that removes 
columns containing all NAs 
train_onc <- train_onc %>% select_if(all_na) #removing the columns 
containing all NAs 

Step 9. Set all columns to numeric and set the seed

train_onc[] <- lapply(train_onc, as.numeric) #force to numeric columns 
 
set.seed(2369) 

Step 10. Set the train/test split (70% for training and 30% for validation)

tr_te_split <- rsample::initial_split(train_onc, prop = 7/10) #70% for 
training, 30% for validation/test 
train_onc <- rsample::training(tr_te_split) %>% as.data.frame() 
test_onc  <- rsample::testing(tr_te_split) %>% as.data.frame() 



2-implementation-guidance.md 8/27/2021

115 / 198

Step 11. Prepare training and validation/test set for modeling

#per https://stackoverflow.com/questions/48805977/r-missing-data-causes-
error-with-xgboost-sparse-model-matrix 
options(na.action='na.pass') 
trainm <- sparse.model.matrix(died_in_90 ~ ., data = train_onc[, 
c(rhscols,"died_in_90")])  
dtrain <- xgb.DMatrix(data = trainm, label=train_onc[, depvar]) 
 
testm <- sparse.model.matrix(died_in_90 ~ ., data = test_onc[, 
c(rhscols,"died_in_90")])  
dtest <- xgb.DMatrix(data = testm, label=test_onc[, depvar]) 
watchlist <- list(train = dtrain, eval = dtest) 

Step 12. Write function to loop through all 25 hyperparameter combinations and run the model

random_grid_results <- list_of_param_sets %>%  
  mutate(results = map(hyperparamters, function(x){ 
 
    message(paste0("model #",       x$model, 
                   " eta = ",              x$eta, 
                   " max.depth = ",        x$max_depth, 
                   " min_child_weigth = ", x$min_child_weight, 
                   " subsample = ",        x$subsample, 
                   " colsample_bytree = ", x$colsample_bytree, 
                   " gamma = ",            x$gamma,  
                   " nrounds = ",          x$nround)) 
 
    set.seed(12345) 
    singleModel <- xgb.train(params = list( 
      booster          = "gbtree", 
      scale_pos_weight = sqrt(12), 
      eta              = x$eta, 
      max_depth        = x$max_depth, 
      min_child_weight = x$min_child_weight, 
      gamma            = x$gamma, 
      lambda           = x$lambda, 
      alpha            = x$alpha, 
      subsample        = x$subsample, 
      colsample_bytree = x$colsample_bytree, 
      max_bin          = x$max_bin, 
      objective        = 'binary:logistic',  
      eval_metric     = "auc"), 
      data=dtrain, 
      nrounds = x$nround,   
      prediction = FALSE, 
      watchlist = watchlist, 
      showsd = TRUE, 
      early_stopping_rounds = 15, 



2-implementation-guidance.md 8/27/2021

116 / 198

      verbose = 2) 
 
    output <- list(score = predict(singleModel, dtest), 
                   id = test_onc$usrds_id 
    ) 
    return(output) 
    })) 

Step 12: Add all results to a list all[[i]] <- random_grid_results This is the end of the loop.

Step 13: Loop through each set of the 25 hyperparameters to pool the 5 prediction scores from each

imputation together and calculate AUC

for(i in 1:how_many_models){ 
   
  one <- as.data.frame(data.table::transpose(all[[1]]$results[[i]]))[1,] 
%>%  
    tidyr::gather(key = "usrds_id", value = "score") %>%  
    mutate(usrds_id = all[[1]]$results[[i]]$id) 
   
  two <- as.data.frame(data.table::transpose(all[[2]]$results[[i]]))[1,] 
%>%  
    tidyr::gather(key = "usrds_id", value = "score") %>%  
    mutate(usrds_id = all[[2]]$results[[i]]$id) 
   
  third <- as.data.frame(data.table::transpose(all[[3]]$results[[i]]))[1,] 
%>%  
    tidyr::gather(key = "usrds_id", value = "score") %>%  
    mutate(usrds_id = all[[3]]$results[[i]]$id) 
   
  fourth <- as.data.frame(data.table::transpose(all[[4]]$results[[i]]))
[1,] %>% 
    tidyr::gather(key = "usrds_id", value = "score") %>% 
    mutate(usrds_id = all[[4]]$results[[i]]$id) 
   
  fifth <- as.data.frame(data.table::transpose(all[[5]]$results[[i]]))[1,] 
%>% 
    tidyr::gather(key = "usrds_id", value = "score") %>% 
    mutate(usrds_id = all[[5]]$results[[i]]$id) 
   
  pooling  = one %>%  
    inner_join(two, by = "usrds_id") %>%  
    inner_join(third, by = "usrds_id") %>% 
    inner_join(fourth, by = "usrds_id") %>% 
    inner_join(fifth, by = "usrds_id") 
   
  pooling$averaged  <- apply(pooling[2:ncol(pooling)], 1, mean) #averaging 
scores 
   
  pooling <- left_join(pooling, test_onc %>% 
select("usrds_id","died_in_90"), by = "usrds_id") 



2-implementation-guidance.md 8/27/2021

117 / 198

   
  #calculate AUC 
  auc <- pROC::auc(pooling$died_in_90, pooling$averaged) #compute AUC 
  } 
  # Add the results to a dataframe 
  toAdd <- data.frame(hyper = all[[1]]$hyperparamters[[i]], 
                      auc = auc) 
   
  final_hp_results <- rbind(final_hp_results,toAdd) 

Step 14. Save the output file

save(final_hp_results, file =  
"2021_final_hp_results_random_grid_imputed.RData") 
 
openxlsx::write.xlsx(as.data.frame(final_hp_results), file =  
"2021_final_hp_results_random_grid_imputed.xlsx", 
                     sheetName='Sheet1', row.names=FALSE,showNA = F) 

Points to consider

Using a random grid search on the narrowed hyperparameter ranges allowed for the pooling of the model

prediction scores from each imputed dataset on each hyperparameter combination to produce one AUC,

which resulted in a much shorter compute time to identify the optimal hyperparameters.

6.3.2.4 Final Imputed XGBoost Model

Steps for running the 3_xgb_imputed_final_hyperparams.R script

Run final model using the best combination of hyperparameters from the previous step on each of the 5

imputed datasets. Pool results by averaging across samples to get the the ROC AUC, confusion matrix and

feature importance

Input:

universe.RData 

Output:

2021_final_hp_results_single_imputed_xgb.xlsx 
2021_final_hp_results_single_imputed_xgb.RData 
2021_conf_matrix.RData 
2021_myplot_xgb.RData 
2021_Rplots.pdf 
2021_all_features.RData 
2021_averaged_feature_importance_xgb.RData 
2021_xgb_pooling_results_final_roc.csv 



2-implementation-guidance.md 8/27/2021

118 / 198

Step 1. Load the libraries

library(pROC) 
library(rsample) 
library(RPostgres) 
library(DBI) 
library(xgboost) 
library(sqldf) 
library(dplyr) 
library(tidyr) 
library(magrittr) 
library(smoof) 
library(mlrMBO)  # for bayesian optimisation   
library(skimr) # for summarising databases 
library(purrr) # to evaluate the loglikelihood of each parameter set in 
the random grid search 
library(DiceKriging) 
library(rgenoud) 
library(data.table) 
library(mltools) #data.table and mltools are needed for "one_hot" function 
library(readr)  #read rds 
library(rBayesianOptimization) 
library(openxlsx) 
library(Matrix) 
library(stringr) 

Step 2. Load the data and set the seed

load('~/universe.RData') 
depvar = "died_in_90" 
 
rhscols = setdiff(names(universe), c("usrds_id", "subset", "died_in_90")) 
 
trainsubsets = c(0,1,2,3,4,5,6) 
testsubsets = c(7,8,9) 
 
set.seed(123) 

Step 3. Set the number of models (1) and set the optimal hyperparameters from the previous section

how_many_models <- 1 
eta <-              data.frame(eta = 0.0501135) 
gamma <-            data.frame(gamma = 2.937342) 
lambda <-           data.frame(lambda = 8.20660) 
alpha <-            data.frame(alpha = 7.27306) 
max_depth <-        data.frame(max_depth = 7) 
min_child_weight <- data.frame(min_child_weight = 2) 



2-implementation-guidance.md 8/27/2021

119 / 198

nround <-          data.frame(nround = 493) 
subsample <-        data.frame(subsample = 0.7513711) 
colsample_bytree <- data.frame(colsample_bytree = 0.6611578)   
max_bin <-          data.frame(max_bin = 935) 

Step 4. Initiate the hyperparameter grid

random_grid <-eta %>% 
  bind_cols(gamma) %>% 
  bind_cols(lambda) %>% 
  bind_cols(alpha) %>% 
  bind_cols(max_depth) %>% 
  bind_cols(min_child_weight) %>% 
  bind_cols(nround)  %>%  
  bind_cols(subsample) %>% 
  bind_cols(colsample_bytree) %>% 
  bind_cols(max_bin) %>%as_tibble() 
 
 
df.params <- bind_rows(random_grid) %>% 
  mutate(rownum = row_number(), 
         model = row_number()) 
list_of_param_sets <- df.params %>% nest(-rownum) 
 
colnames(list_of_param_sets) <- c("model","hyperparamters") 

Step 5. Set the training and test datasets

train_full = universe %>%  
  filter(subset <=6 ) %>% as.data.frame() 
 
test_full = universe %>%  
  filter(subset > 6 ) %>% as.data.frame() 

Step 6. Loop through each imputation

for(i in 1:5){ 
---- 
} 

For each imputation perform the following steps:

Step 7. Prepare the training and the test data for modeling



2-implementation-guidance.md 8/27/2021

120 / 198

train_onc=train_full %>%  
  filter(impnum == i) %>% as.data.frame() 
 
train_onc = train_onc[order(train_onc$usrds_id),]  
 
rownames(train_onc) <- train_onc$usrds_id #preserving usrds_id as rownames 
because usrds_id will be removed in next line 
 
train_onc <- train_onc[, c(rhscols,"died_in_90")] #selecting variables  
 
all_na <- function(x) any(!is.na(x)) #creating function that removes 
columns containing all NAs 
train_onc <- train_onc %>% select_if(all_na) #removing the columns 
containing all NAs 
 
train_onc[] <- lapply(train_onc, as.numeric) #force to numeric columns 
 
print(paste("dimensions for train_onc:",dim(train_onc))) 
 
#per https://stackoverflow.com/questions/48805977/r-missing-data-causes-
error-with-xgboost-sparse-model-matrix 
options(na.action='na.pass') 
trainm <- sparse.model.matrix(died_in_90 ~ ., data = train_onc)  
dtrain <- xgb.DMatrix(data = trainm, label=train_onc[, depvar]) 
rm(trainm) 
rm(train_onc) 
gc() 
 
#### test pre-processing 
 
test_onc=test_full %>%  
  filter(impnum == i) %>% as.data.frame() 
 
test_onc = test_onc[order(test_onc$usrds_id),] 
 
test_ids <- test_onc$usrds_id #preserving usrds_id  
rownames(test_onc) <- test_onc$usrds_id #preserving usrds_id as rownames 
because usrds_id will be removed in next line 
 
test_onc <- test_onc[, c(rhscols,"died_in_90")] #selecting variables  
 
test_onc <- test_onc %>% select_if(all_na) #removing the columns 
containing all NAs 
 
test_onc[] <- lapply(test_onc, as.numeric) #force to numeric columns 
 
print(paste("dimensions for test_onc:",dim(test_onc))) 
 
options(na.action='na.pass') 
testm <- sparse.model.matrix(died_in_90 ~ ., data = test_onc)  
dtest <- xgb.DMatrix(data = testm, label=test_onc[, depvar]) 
rm(testm) 
gc() 



2-implementation-guidance.md 8/27/2021

121 / 198

Step 8. Write function to run the model

 watchlist <- list(train = dtrain, eval = dtest) 
  
 random_grid_results <- list_of_param_sets %>%  
   mutate(results = map(hyperparamters, function(x){ 
      
     message(paste0("model #",       x$model, 
                    " eta = ",              x$eta, 
                    " max.depth = ",        x$max_depth, 
                    " min_child_weigth = ", x$min_child_weight, 
                    " subsample = ",        x$subsample, 
                    " colsample_bytree = ", x$colsample_bytree, 
                    " gamma = ",            x$gamma,  
                    " nrounds = ",          x$nround)) 
      
     set.seed(12345) 
     singleModel <- xgb.train(params = list( 
       booster          = "gbtree", 
       scale_pos_weight = sqrt(12), 
       eta              = x$eta, 
       max_depth        = x$max_depth, 
       min_child_weight = x$min_child_weight, 
       gamma            = x$gamma, 
       lambda           = x$lambda, 
       alpha            = x$alpha, 
       subsample        = x$subsample, 
       colsample_bytree = x$colsample_bytree, 
       max_bin          = x$max_bin, 
       objective        = 'binary:logistic',  
       eval_metric     = "auc"), 
       data=dtrain, 
       nrounds = x$nround,   
       prediction = FALSE, 
       watchlist = watchlist, 
       showsd = TRUE, 
       early_stopping_rounds = 15, 
       verbose = 0) 

Step 9. Obtain feature importance and save prediction scores and USRDS IDs to a list

      feature_imp <- xgb.importance(singleModel$feature_names, 
                                    model = singleModel) 
      all_features[[i]] <- feature_imp # add feature_imp to list 
      
      output <- list(score = predict(singleModel, dtest), 
                     id = test_ids 



2-implementation-guidance.md 8/27/2021

122 / 198

Step 10. Add modeling results to a list all[[i]] <- random_grid_results This is the end of the loop.

Step 11: Pool the 5 prediction scores from each imputation together and calculate AUC

final_hp_results_single <- data.frame() 
 
for(i in 1:how_many_models){ 
   
  one <- as.data.frame(data.table::transpose(all[[1]]$results[[i]]))[1,] 
%>%  
    tidyr::gather(key = "usrds_id", value = "score") %>%  
    mutate(usrds_id = all[[1]]$results[[i]]$id) 
   
  two <- as.data.frame(data.table::transpose(all[[2]]$results[[i]]))[1,] 
%>%  
    tidyr::gather(key = "usrds_id", value = "score") %>%  
    mutate(usrds_id = all[[2]]$results[[i]]$id) 
   
  third <- as.data.frame(data.table::transpose(all[[3]]$results[[i]]))[1,] 
%>%  
    tidyr::gather(key = "usrds_id", value = "score") %>%  
    mutate(usrds_id = all[[3]]$results[[i]]$id) 
   
  fourth <- as.data.frame(data.table::transpose(all[[4]]$results[[i]]))
[1,] %>% 
    tidyr::gather(key = "usrds_id", value = "score") %>% 
    mutate(usrds_id = all[[4]]$results[[i]]$id) 
   
  fifth <- as.data.frame(data.table::transpose(all[[5]]$results[[i]]))[1,] 
%>% 
    tidyr::gather(key = "usrds_id", value = "score") %>% 
    mutate(usrds_id = all[[5]]$results[[i]]$id) 
   
  pooling  = one %>%  
    inner_join(two, by = "usrds_id") %>%  
    inner_join(third, by = "usrds_id") %>% 
    inner_join(fourth, by = "usrds_id") %>% 
    inner_join(fifth, by = "usrds_id") 
   
  pooling$averaged  <- apply(pooling[2:ncol(pooling)], 1, mean) #averaging 
scores 
  pooling$usrds_id <- as.character(pooling$usrds_id) 
   
  test_onc$usrds_id <- as.character(rownames(test_onc)) 
   
  pooling <- left_join(pooling, test_onc %>% 
select("usrds_id","died_in_90"), by = "usrds_id") 
   
  pooling$predicted <- ifelse(pooling$averaged > 0.5, 1,0) 
   
  print("pooling summary after left_join():") 
  summary(pooling) 
   



2-implementation-guidance.md 8/27/2021

123 / 198

  print("conf matrix:") 
  table(pooling$predicted, pooling$died_in_90) 
  conf_matrix <- table(pooling$predicted, pooling$died_in_90) 
   
  save(conf_matrix, file = "2021_conf_matrix.RData") 

Step 12. For each imputation, calculate the confusion matrix and model evaluation metrics at a threshold of

0.5

  tp <- conf_matrix[2,2] 
  fp <- conf_matrix[2,1] 
  fn <- conf_matrix[1,2] 
  tn <- conf_matrix[1,1] 
   
  sensitivity = tp / (tp + fn) 
  specificity = tn / (fp + tn) 
  fpr = 1 - specificity 
  tpr = sensitivity 
  LR = sensitivity / (1 - specificity) 
  ppv = tp / (tp + fp) 
  npv = tn / (tn + fn) 
  f1_score = 2 * ppv * sensitivity / (ppv + sensitivity) 
   
  accuracy <- mean(pooling$predicted == pooling$died_in_90) 

Step 13. Plot ROC AUC

  myplot <- pROC::plot.roc(pooling$died_in_90, pooling$averaged) 
   
  save(myplot, file = "2021_myplot_xgb.RData") 

Step 14. Save final non-imputed XGBoost modeling results

  write.csv(pooling, '2021_xgb_pooling_results_final_roc.csv') 
   
  final_hp_results_single <- rbind(final_hp_results_single,toAdd) 
   
  save(final_hp_results_single, file = 
"2021_final_hp_results_single_imputed_xgb.RData") 
  openxlsx::write.xlsx(as.data.frame(final_hp_results_single), file =  
"2021_final_hp_results_single_imputed_xgb.xlsx", 
                       sheetName='Sheet1', row.names=FALSE,showNA = F)   
} 
 
print("saving the feature importance") 
save(all_features, file = "2021_all_features.RData") 



2-implementation-guidance.md 8/27/2021

124 / 198

Step 15: Average feature importance across imputations and save file

#averging the feature importance 
averaged <- all_features %>% reduce(inner_join, by = "Feature") %>% 
as.data.frame() 
 
rownames(averaged) <- averaged$Feature 
averaged = averaged %>% select(contains("Gain")) 
 
averaged$average = as.data.frame(apply(averaged, 1, mean)) #compute 
average 
 
averaged$feature = rownames(averaged) 
 
save(averaged, file = "2021_averaged_feature_importance_xgb.RData") 

6.3.2.5 Calibration

The calibration curve shows the reliability of the model by each prediction score category, the number of

patients that fall into each category, and the proportion of patients in each category who actually died in the

first 90 days following dialysis initiation.

Steps to running the 4_xgb_imputed_calibration.ipynb script

Input:

2021_xgb_pooling_results_final_roc.csv 

Output:

model_calibrated_xgb_imputed.pickle 
y_calibrated_xgb_imputed.pickle 

Step 1. Import libraries

import pandas as pd 
import numpy as np 
import pickle 
 
import sys 
#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
# import custom functions 
from plot_functions import onc_plot_calibration_curve 
from calibrate_onc import calibrate_onc 



2-implementation-guidance.md 8/27/2021

125 / 198

 
#connect to posgres database 
import psycopg2 
import sqlalchemy 
from sqlalchemy import create_engine 
 
con = create_engine('postgresql://username:password@location/dbname') 

Step 2. Load results from the XGBoost Imputed model

# load results from the aucroc evaluated model) 
pred_df = 
pd.read_csv('./roc_results/2021_xgb_pooling_results_final_roc.csv') 
pred_df = pred_df.loc[:,['averaged','died_in_90','usrds_id']] 

Step 3. Plot the original model's calibration curve. This function onc_plot_calibration_curve is located in

the /onc_functions/plot_functions.py file.

def onc_plot_calibration_curve(y_true, y_proba, label, filename): 
     
    #calculate numbers to plot 
    clf_score = brier_score_loss(y_true, y_proba, pos_label=1) 
    fraction_of_positives, mean_predicted_value = \ 
                calibration_curve(y_true, y_proba, n_bins=10) 
    # set up plot 
    fig1 = plt.figure(1, figsize=(10,10))#,dpi=400)     
    ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) 
    ax2 = plt.subplot2grid((3, 1), (2, 0)) 
     
    #plot the reference for a prefectly calibrated model 
    ax1.plot([0, 1], [0, 1], "k:", label="Reference Line") 
     
    # plot the calibration curve 
    ax1.plot(mean_predicted_value, fraction_of_positives, "ks-", 
                    label=label) 
     
    # plot histogram of predicted values 
    ax2.hist(y_proba, range=(0, 1), bins=10, label=label, 
                 histtype="step", lw=2) 
     
    # set axes and other figure parameters 
    ax1.set_ylabel("Observed Event Rate") 
    ax1.set_xlabel("Predicted Event Rate") 
    ax1.set_ylim([-0.05, 1.05]) 
    ax1.legend(loc="lower right") 
     
    ax2.set_xlabel("Mean predicted value") 
    ax2.set_ylabel("Count") 
    ax2.legend(loc="upper right", ncol=1) 



2-implementation-guidance.md 8/27/2021

126 / 198

     
    plt.rc('axes', labelsize=22)    # fontsize of the x and y labels 
    plt.rc('xtick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('ytick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('legend', fontsize=20)    # legend fontsize 
    #save figure resolution 
    plt.savefig(filename + ".png",  dpi=400,  transparent=True) 
    plt.show() 

Run the function above.

onc_plot_calibration_curve( 
                          y_true=pred_df.died_in_90,  
                          y_proba=pred_df.averaged,  
                          label='XGBoost_imputed', 
                          
filename='./roc_results/xgb_imputed_orig_calibration') 



2-implementation-guidance.md 8/27/2021

127 / 198

The XGBoost model can be calibrated by training an isotonic regression on a portion of the testing set.

(Model calibration is performed as probabilities of death in the first 90 days are more informative and useful

for clinicians than a simple binary prediction. In order to produce valid probability estimates, predicted

events rates should track observed rates across the full range of predicted risk.)

Step 4. Load the subset for each ID:

df = pd.read_sql_query(''' 
SELECT   usrds_id, subset FROM medxpreesrd;''', con) 

Merge the subset details with the predictions

data = pd.merge(pred_df, df, how="left", on="usrds_id") 



2-implementation-guidance.md 8/27/2021

128 / 198

The next steps are inside function calibrate_onc located in the /onc_functions/calibrate_onc.py file.

Step 5. Split the predictions from the test set (how we evaluated the model) into a test/train for the

calibration (isotonic regression classifier). Split test data (subsets 7-9) into new train (7-8)/test (9) sets

calibration_train_set = data[((data.subset==7)|(data.subset==8))].copy() 
calibration_test_set = data[data.subset==9].copy() 

Step 6. Define the calibration model

ir = IsotonicRegression(out_of_bounds="clip") 

Step 7. Fit the model to the XGBoost predictions from the (new) training set

ir.fit(calibration_train_set.score, calibration_train_set.y ) 

Step 8. Evaluate the model using the (new) test set

p_calibrated = ir.transform(calibration_test_set.score)  
calibration_test_set['p_calibrated'] = p_calibrated 

Step 9. Save

with open(path + 'model_calibrated_' + model_name + '.pickle', 'wb') as 
picklefile:   
            pickle.dump(ir,picklefile) 
     
with open(path + 'y_calibrated_' + model_name + '.pickle', 'wb') as 
picklefile:   
            pickle.dump(calibration_test_set, picklefile) 

Step 10. Print the scores from the original and calibrated model. The function print_calibrated_results is

found in the /onc_functions/calibrate_onc.py file.

def print_calibrated_results(y_true, y_pred, y_calibrated): 
    '''print scores for pre and post calibration''' 
     
    acc = accuracy_score(y_true, np.round(y_pred)) 
    acc_calibrated = accuracy_score(y_true, np.round(y_calibrated )) 
    print ("accuracy - original/calibrated:", acc, "/", acc_calibrated) 



2-implementation-guidance.md 8/27/2021

129 / 198

         
    auc = roc_auc_score(y_true, y_pred) 
    auc_calibrated = roc_auc_score(y_true, y_calibrated) 
    print ("ROC AUC - original/calibrated:     ", auc, "/", 
auc_calibrated) 
     
    pr = average_precision_score(y_true, y_pred) 
    pr_calibrated = average_precision_score(y_true, y_calibrated ) 
    print ("avg precision - original/calibrated:", pr, "/", pr_calibrated) 
     
    clf_score = brier_score_loss(y_true, y_calibrated, pos_label=1) 
    print("\tBrier: %1.3f" % (clf_score)) 

Run these 2 calibration functions.

calibrated_results = calibrate_onc(data, 
path='./roc_results/',model_name='xgb_imputed') 

6.3.2.6 Plotting calibrated results

Steps to running the 5_xgb_imputed_calibrated_plots.ipynb script

Input:

y_calibrated_xgb_imputed.pickle 

Output:

xgb_imputed_calibration.jpeg 
xgb_imputed_mortality_bar.jpeg 
xgb_imputed_roc_auc_bw.jpeg 
2021_xgb_imputed_calibrated_confusion_matrix.csv 

Step 1. Import libraries

import pandas as pd 
import numpy as np 
import pickle 
 
#import custom plotting functions 
from plot_functions import onc_plot_calibration_curve, onc_calc_cm, 
onc_plot_roc, onc_plot_precision_recall, onc_plot_risk 

Step 2. Load results from the calibrated model



2-implementation-guidance.md 8/27/2021

130 / 198

with open('./roc_results/y_calibrated_xgb_imputed.pickle', 'rb') as 
picklefile:   
            calibrated_results = pickle.load(picklefile) 

Step 3. Plot the calibration curve of the calibrated model using the same onc_plot_calibration_curve

function from /onc_functions/plot_functions.py

onc_plot_calibration_curve( 
                y_true=calibrated_results.y,  
                y_proba=calibrated_results.p_calibrated,  
                label='XGBoost imputed calibrated', 
                filename='./roc_results/xgb_imputed_calibrated') 

Step 4. Plot the Risk of the calibrated model. This function onc_plot_risk is located and imported from

plot_functions.py

def onc_plot_risk(y_true, y_proba, label, filename): 
    # calculate values for plot 
    fraction_of_positives, mean_predicted_value = \ 
                calibration_curve(y_true, y_proba, n_bins=10) 
     
    # set up figure params 



2-implementation-guidance.md 8/27/2021

131 / 198

    fig1 = plt.figure(1, figsize=(12,30),dpi=400) 
    ax1 = plt.subplot2grid((7, 1), (0, 0), rowspan=2) 
     
    # bar plot 
    xs = np.arange(len(fraction_of_positives)) 
    ax1.bar(xs, mean_predicted_value, color='k', width = 0.25, 
label=label) 
    ax1.bar(xs+.25, fraction_of_positives, color='gray', width = 0.25, 
label='Observed') 
     
    #more figure settings 
    plt.xticks(xs, np.arange(1, len(xs)+1, 1)) 
    ax1.set_ylabel("Mortality Rate") 
    ax1.set_xlabel("Decile of Predicted Mortality Risk") 
    ax1.legend(loc="upper left") 
    plt.rc('axes', labelsize=22)    # fontsize of the x and y labels 
    plt.rc('xtick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('ytick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('legend', fontsize=20)    # legend fontsize 
    #save plot  
    plt.savefig(filename + ".png",  dpi=400,  transparent=True) 

onc_plot_risk( 
    y_true=calibrated_results.y,  
    y_proba=calibrated_results.p_calibrated, 
    label='Predicted (XGBoost Imputed)', 
    filename='xgb_imputed_mortality_bar') 



2-implementation-guidance.md 8/27/2021

132 / 198

Step 5. Plot the ROC AUC of the calibrated model. This function onc_plot_roc is located and imported

from plot_functions.py

def onc_plot_roc(y_true, y_pred, model_name, **kwargs): 
    '''  
    Plot the ROC AUC and return the test ROC AUC results. 
    INPUT: y_true, y_pred, model_name, **kwargs 
    ''' 
 
    #calc values for plot 
    false_positives, true_positives, threshold = roc_curve(y_true, y_pred) 
    c_roc_auc_score = auc(false_positives, true_positives) 
     
    #set figure params 
    fig1 = plt.figure(1, figsize=(12,30),dpi=400) 
    ax1 = plt.subplot2grid((7, 1), (0, 0), rowspan=2) 
     
    #plot reference line for chance 
    ax1.plot([0, 1], [0, 1], linestyle='--', lw=2, color='gray', 
        label='Chance', alpha=.8) 
     
    # plot AUC ROC 
    ax1.plot(false_positives, true_positives,  
        label=r'ROC (AUC = %0.3f)' % (c_roc_auc_score), 
        lw=2, alpha=.8, color = 'k') 
     
    # additional figure params 



2-implementation-guidance.md 8/27/2021

133 / 198

    ax1.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05],) 
    ax1.legend(loc="lower right") 
    plt.xlabel('1-Specificity') 
    plt.ylabel('Sensitivity') 
    plt.rc('axes', labelsize=22)    # fontsize of the x and y labels 
    plt.rc('xtick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('ytick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('legend', fontsize=20)    # legend fontsize 
    # save plot 
    plt.savefig(model_name + "_calibrated_roc_auc_bw.png",  dpi=400,  
transparent=True) 
    plt.show() 

onc_plot_roc( 
            y_true=calibrated_results.y,  
            y_pred=calibrated_results.p_calibrated,  
            model_name='xgb_imputed'); 

Step 6. Save the performance metrics at multiple thresholds. The following function is imported from

/onc_functions/plot_functions.py

def onc_calc_cm(y_true, y_predictions, range_probas=[0.1,0.5]): 
    ''' 
    Plot the confusion matrix and scores for multiple thresholds 



2-implementation-guidance.md 8/27/2021

134 / 198

    ''' 
    df = pd.DataFrame(index = range_probas, 
                      columns=['threshold','sensitivity','specificity', 
                               
'likelihood_ratio_neg','likelihood_ratio_pos', 
                               
'tp','fp','tn','fn','total_survived','total_deceased',]) 
    for proba_threshold in range_probas: 
         
        cm = confusion_matrix(y_true, y_predictions > proba_threshold) 
        tn = cm[0][0] 
        fp = cm[0][1] 
         
        sensitivity = recall_score(y_true, y_predictions > 
proba_threshold) 
        specificity = tn / (tn + fp) 
 
        df.loc[proba_threshold, "threshold"] = proba_threshold 
        df.loc[proba_threshold,"sensitivity"] = sensitivity 
        df.loc[proba_threshold, "specificity"] = specificity 
        df.loc[proba_threshold, "likelihood_ratio_neg"] = (1-
sensitivity)/specificity 
        df.loc[proba_threshold, "likelihood_ratio_pos"] = sensitivity/(1-
specificity) 
        df.loc[proba_threshold, "tp"] = cm[1][1] 
        df.loc[proba_threshold, "fp"] = fp 
        df.loc[proba_threshold, "tn"] = tn 
        df.loc[proba_threshold, "fn"] = cm[1][0] 
        df.loc[proba_threshold, "total_survived"] = np.sum(cm[0]) 
        df.loc[proba_threshold, "total_deceased"] = np.sum(cm[1]) 
    return df 

cm = onc_calc_cm( 
              calibrated_results.y,  
              calibrated_results.p_calibrated,  
              range_probas=[.10,.20, .30, .40, .50]) 
cm.to_csv('./roc_results/2021_xgb_imputed_calibrated_confusion_matrix.csv'
) 
cm 

6.3.2.7 Saving data for the fairness assessment



2-implementation-guidance.md 8/27/2021

135 / 198

Steps to running the 6_xgb_fairness_assess_get_data.ipynb script

Get the columns of data required to compute fairness assessment and save

inc_age = age 
sex 
dialtyp=type of dialysis 
race 

Input:medexpressesrd table from Postgres

Output:

complete_fairness_data.pickle 

Step 1. Import the libraries

import psycopg2 
import sqlalchemy 
from sqlalchemy import create_engine 
 
import numpy as np 
import pandas as pd 
import sys 
import pickle 

Step 2. Connect to the Postgres database

The credentials required to connect to the database should be inserted in the following snippet of code

below:

con = create_engine('postgresql://username:password@location/dbname') 

Step 3. Import the columns required for the fairness assessment from the database

df = pd.read_sql_query('''SELECT   usrds_id, died_in_90, inc_age, sex, 
dialtyp, race, hispanic, subset FROM medxpreesrd;''', con) 

Step 4. Save the files

with open('complete_fairness_data.pickle', 'wb') as picklefile:   
    pickle.dump(df, picklefile) 



2-implementation-guidance.md 8/27/2021

136 / 198

6.3.2.8 Fairness assessment

ML models can perform differently for different categories of patients, so the imputed XGBoost model was

assessed for fairness, or how well the model performs for each category of interest (demographics—sex,

race, and age—as well as initial dialysis modality). Age is binned into the following categories based on

UCSF clinician input and an example in literature: 18-25, 26-35, 36-45, 46-55, 56-65, 66-75, 76-85, 86+.

The USRDS predefined categories for race, sex, and dialysis modality were used for the fairness

assessment.

Steps for running the 7_xgb_imputed_fairness.ipynb script

Calculations for specific groups of patients to assess the fairness of the final model for all patients in the

test subsets. For the fairness assessment for the imputed XGBoost model, all results are for imputation #5

for the non-calibrated model.

Input:

2021_xgb_pooling_results_final_roc.csv 
complete_fairness_data.pickle 

Output:

2021_xgb_imputed_fairness.csv 

Step 1. Import libraries

import numpy as np 
import pandas as pd 
 
import pickle 
import datetime 
import sys 
#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
# import custom function 
from fairness import get_fairness_assessment 

Step 2. Write the function that calculates AUC and the confusion matrix from the model prediction scores.

This function is located and imported from the /onc_functions/fairness.py file.

def get_fairness_assessment(df, y_proba_col_name, y_true_col_name): 
     
    #turn the continuous age variable into age categories 



2-implementation-guidance.md 8/27/2021

137 / 198

Step 3. Load results from the model and fairness details

pred_df = 
pd.read_csv('./roc_results/2021_xgb_pooling_results_final_roc.csv') 
 
with open('../complete_fairness_data.pickle', 'rb') as f: 
        dataset = pickle.load(f) 
  
# merge model results with fairness details 
data = pred_df.merge(dataset, how='left', on=['usrds_id','died_in_90']) 

    df['agegroup'] = pd.cut(df.inc_age,  
                           bins=[17, 25, 35, 45, 55, 65, 75, 85, 90],  
                           labels=[1, 2, 3, 4, 5, 6, 7, 8]) 
     
    df = df.drop(columns=['inc_age']) 
     
    #replace NaNs with a large number that does not appear in the data, 
effectively creating another category for missing values 
    df.loc[:,['race','dialtyp','hispanic']] = df.loc[:,
['race','dialtyp','hispanic']].fillna(100.0, axis=1).copy() 
     
    #Identify the cols for the fairness assessment 
    fairness_cols = ['agegroup', 'sex','dialtyp', 'race','hispanic'] 
     
    #loop through all categories and values to get counts, auc, and 
confusion matrix 
    rows_list = [] 
    for col in fairness_cols: 
        for name, c in df.groupby(col): 
            fairness_dict = {} 
            fairness_dict['Feature'] = col 
            fairness_dict['Value'] = name 
            fairness_dict['Count'] = c.shape[0] 
             
            fairness_dict['AUC'] = roc_auc_score(c[y_true_col_name], 
c[y_proba_col_name]) 
            tn, fp, fn, tp = confusion_matrix(y_true = c[y_true_col_name],  
                                              y_pred = 
np.where(c[y_proba_col_name] >= 0.5, 1, 0)).ravel() 
            fairness_dict['TN'] = tn 
            fairness_dict['FP'] = fp 
            fairness_dict['FN'] = fn 
            fairness_dict['TP'] = tp 
            rows_list.append(fairness_dict) 
     
    #convert results from a list to a dataframe 
    df_fairness = pd.DataFrame(rows_list) 
    return df_fairness 



2-implementation-guidance.md 8/27/2021

138 / 198

Step 4. Calculate fairness assessment

fairness = get_fairness_assessment(data, 
                                   y_proba_col_name='averaged', 
                                   y_true_col_name='died_in_90') 

Step 5. Save results

fairness.to_csv('./roc_results/' + str(dte) + '_xgb_imputed_fairness.csv') 



2-implementation-guidance.md 8/27/2021

139 / 198

Points to consider

Performing the fairness assessment on the categories of interest gives additional insight into how the model

performs by different patient categories of interest (by demographics, etc.). Future researchers should

perform fairness assessments to better evaluate model performance, especially for models that may be

deployed in a clinical setting. Other methods of assessing fairness include evaluating true positives,

sensitivity, positive predictive value, etc. at various threshold across the different groups of interest, which

would allow selection of a threshold that balances model performance across the groups of interest.

6.3.2.9 Risk assessment

Steps for running the 8_xgb_imputed_risk_categories.ipynb script

Note: Risk categorization is run on the non-calibrated model results.

Input:

complete_fairness_data.pickle 
2021_xgb_pooling_results_final_roc.csv 

Output:

2021_xgb_imputed_risk_cat.csv 

Step 1. Import libraries

import numpy as np 
import pandas as pd 
import pickle 
 
import sys 



2-implementation-guidance.md 8/27/2021

140 / 198

#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
from risk import get_risk_categories 
 
print('python-' + sys.version) 
import datetime 
dte = datetime.datetime.now() 
dte = dte.strftime("%Y%m%d") 

Step 2. Import the details from the fairness assessment

with open('../complete_fairness_data.pickle', 'rb') as f: 
        dataset = pickle.load(f) 

Step 3. Import the pooled results from the model

pred_df = 
pd.read_csv('./roc_results/2021_xgb_pooling_results_final_roc.csv') 

Step 4. Merge the details with the results

data = pred_df.merge(dataset, on=['usrds_id','died_in_90']) 

Step 5. Calculate risk. The function get_risk_categories is imported from the /onc_functions/risk.py file.

def get_risk_categories(dataset, y_proba_col_name, y_true_col_name): 
     
    test_x_pd = dataset[dataset.subset > 6].copy().sort_values(by = 
'usrds_id') 
    del dataset 
     
    df = test_x_pd.loc[:,[y_true_col_name,y_proba_col_name]] 
     
    #construct the risk categories from the predicted score 
    df['risk_categories'] = pd.cut(df[y_proba_col_name],         
                                   bins=[-0.1, 0.09, 0.19, 0.29, 0.39, 
0.49, 0.59, 0.69, 0.79, 0.89, 0.99], 
                                   labels=['0-0.09', '0.1-0.19', '0.2-
0.29', '0.3-0.39', '0.4-0.49', 
                                           '0.5-0.59','0.6-0.69','0.7-
0.79','0.8-0.89','0.9-0.99']) 
     
    #loop through all the categories to get the predicted score 
    risk_list = [] 



2-implementation-guidance.md 8/27/2021

141 / 198

    for name, c in df.groupby('risk_categories'): 
        risk_dict = {} 
        risk_dict['Risk Category'] = name 
        risk_dict['Count'] = c[y_true_col_name].shape[0] 
        risk_dict['Count Died in 90'] = c[y_true_col_name].sum() 
        risk_dict['Count Survived'] = c[y_true_col_name].shape[0]-
c[y_true_col_name].sum() 
        risk_dict['Percent Died in 90'] = 
c[y_true_col_name].sum()/c[y_true_col_name].shape[0] 
         
        risk_list.append(risk_dict) 
     
    df_risk = pd.DataFrame(risk_list) 
    return df_risk 

Run the function above

risk_cat = get_risk_categories(data, 
                               y_proba_col_name='score', 
                               y_true_col_name='died_in_90') 

Step 6. Save

risk_cat.to_csv('./results/' + str(dte) + '_xgb_imputed_risk_cat.csv') 

6.3.3 Logistic Regression (LR) Model



2-implementation-guidance.md 8/27/2021

142 / 198

LR is a classic categorization model that can be used to examine the association of (categorical or

continuous) independent variable(s) with one binary dependent variable.

Environment

The environment used for the LR model was purchased on Amazon Web Services (AWS):

Name: m5.4xlarge 
vCPU: 16 
GPU: 0 
Cores: 8 
Threads per core: 2 
Architecture: x86_64 
Memory: 64 GB 
Operating System: Linux (Ubuntu 20.04 Focal Fossa) 
Network Performance: 10 GB or less 
Zone: US govcloud west 

The LR model takes less than 1 day to run each section of code if using the above environment.

The LR model and cross validation methods from the Python (version 3.6.9) library scikit learn (version

0.24.1) were utilized along with the following libraries:

Python Library Version

scikit-learn 0.24.1

numpy 1.19.5

pandas 1.1.5

matplotlib 3.3.3

seaborn 0.11.1

Points to consider

The use of parallel processing significantly decreased the amount of time it took to run the model.

6.3.3.1 Pre-processing the training dataset

The preprocessing included one hot encoding of categorical features and removal of features with missing

values.

Steps for running the 1_lr_preprocessing.ipynb script

Input:

medexpressesrd 
micecomplete_pmm 
numeric_columns.pickle 



2-implementation-guidance.md 8/27/2021

143 / 198

Output:

complete1.pickle 
complete2.pickle 
complete3.pickle 
complete4.pickle 
complete5.pickle 

Step 1. Install/import libraries

import psycopg2 
import sqlalchemy 
from sqlalchemy import create_engine 
 
# other libraries 
import numpy as np 
import pandas as pd 
import sys 
import pickle 
import seaborn as sns 
 
#plotting 
import matplotlib.pyplot as plt 
%matplotlib inline 

Step 2. Connect to the Postgres database.

The credentials for the Postgres database will be inserted here.

con = create_engine('postgresql://username:password@address/dbname') 

Step 3. Get data

Load the full non-imputed data found in the medexpressesrd table from Postgres database.

df = pd.read_sql_query('''SELECT * FROM medxpreesrd;''', con) 

Get counts for each class. (This gets used later when we train the model.)

neg_class_count, positive_class_count = np.bincount(df['died_in_90']) 



2-implementation-guidance.md 8/27/2021

144 / 198

The labels are 2 integers, 0 (survived) or 1 (deceased). These correspond to the class. Note that we have a

class imbalance with deceased being the minority class.

Label Class Count 
0 survived 1064112 
1 deceased 86083 

 Step 4. Remove missing

data

Logistic regression models cannot account for missing values. The columns to remove are loaded at the top

of the notebook in the variable vars_to_remove and were chosen by the clinical experts who are part of

the project team.

For this dataset, the columns of pre-esrd claims data that have missing values (claim counts, etc) were

removed, keeping the binary features from the Medicare pre-ESRD claims, which include indicators for

claims in each care setting, indicator for pre-ESRD claims, indicators for each diagnosis group.

df.drop(columns=vars_to_remove,inplace=True) 

Step 5. Encode categorical features



2-implementation-guidance.md 8/27/2021

145 / 198

One variable dial_train_time was created from taking the difference between 2 dates in the medevid table.

This feature was the only non-claims-related feature to have a large number of missing values, but instead

of dropping, it was encoded as follows:

a number greater than zero=1

0=0

missing=3 Thus, the feature is turned into a categorical rather than numeric variable to retain some

(though not all) information.

df.dial_train_time = df.dial_train_time.fillna(-1) 
df.dial_train_time=df.dial_train_time.astype(int).clip(lower=-1,upper=1) 
df.dial_train_time=df.dial_train_time.astype(str).replace("-1","na") 

Use dummy variables for categorical variables (loaded at the top of the notebook) which is the method

used for one-hot encoding.

Get the list of categorical variables that have more then 2 levels, then encode using pandas get_dummies

function.

dummy_list = [] 
for col in categoryVars: 
    u = len(df[col].unique()) 
    if u>2: 
        dummy_list.append(col) 
 
df = pd.concat([df, 
pd.get_dummies(df.loc[:,dummy_list].astype('str'))],axis=1).drop(columns=d
ummy_list,axis=1) 

Step 6. Load imputed data Import imputed data micecomplete_pmm table from Postgres.

imp = pd.read_sql_query('''SELECT *, row_number()  
 OVER(PARTITION BY usrds_id) AS impnum  
 FROM micecomplete_pmm 
''', con) 

Step 7. Remove the 5 (imputed) columns from the original data

df.drop(columns=["height", "weight", "bmi", "sercr", "album", "gfr_epi", 
"heglb"],inplace=True) 
df.shape = (1150195, 290) 

Step 8. Separate the imputed data into 5 data frames



2-implementation-guidance.md 8/27/2021

146 / 198

This makes it easier to store, load, and compute.

imp1 = imp[imp.impnum==1] 
imp2 = imp[imp.impnum==2] 
imp3 = imp[imp.impnum==3] 
imp4 = imp[imp.impnum==4] 
imp5 = imp[imp.impnum==5] 

Step 9. Merge the encoded data with each of the 5 imputed datasets.

This is a left merge on the non-imputed data based on the usrds_id and the subset number.

complete1 = pd.merge(df, imp1, how='left', on=["usrds_id","subset"]) 
complete2 = pd.merge(df, imp2, how='left', on=["usrds_id","subset"]) 
complete3 = pd.merge(df, imp3, how='left', on=["usrds_id","subset"]) 
complete4 = pd.merge(df, imp4, how='left', on=["usrds_id","subset"]) 
complete5 = pd.merge(df, imp5, how='left', on=["usrds_id","subset"]) 
 
complete5.shape 
(1150195, 298) 

Step 10. Save

Save each set to the current directory as a pickle file (a file type that works well for pandas dataframes).

with open('complete1.pickle', 'wb') as picklefile:   
    pickle.dump(complete1, picklefile) 
with open('complete2.pickle', 'wb') as picklefile:   
    pickle.dump(complete2, picklefile) 
with open('complete3.pickle', 'wb') as picklefile:   
    pickle.dump(complete3, picklefile) 
with open('complete4.pickle', 'wb') as picklefile:   
    pickle.dump(complete4, picklefile) 
with open('complete5.pickle', 'wb') as picklefile:   
    pickle.dump(complete5, picklefile) 

Points to consider

The approach used to handle missing values is dependent on the dataset and the features in the dataset.

Clinical expertise is crucial in understanding the impact of missing values and whether or not they should be

imputed, removed, or replaced.

6.3.3.2 Hyperparameter tuning and final logistic regression model

This script computes the 5-fold cross-validation gridsearch on each set of the complete imputed data to

find the best hyperparameters for the logistic regression model. LR has few parameters to set, therefore,

hyperparameter tuning is simpler for this model. The data was split into test and train sets (the same



2-implementation-guidance.md 8/27/2021

147 / 198

~70/30 split used in the other models). The training data was used to run the cross-validation model. The

following parameters were tested:

regularization strength

regularization type (penalty)

max iterations for convergence

class weight

The cross validation was run once per each imputed dataset and results were pooled (averaged).

Steps for running the 2_logistic_regression.ipynb script

Input:

complete1.pickle 
complete2.pickle 
complete3.pickle 
complete4.pickle 
complete5.pickle 

Output:

2021_LR_cv_clf_imp_1.pickle 
2021_LR_cv_clf_imp_2.pickle 
2021_LR_cv_clf_imp_3.pickle 
2021_LR_cv_clf_imp_4.pickle 
2021_LR_cv_clf_imp_5.pickle 
2021_final_LR_model_test_pred_proba_imp_x.pickle 
2021_final_model_LR_fpr_all.pickle 
2021_final_model_LR_tpr_all.pickle 
2021_final_model_LR_auc_all.pickle 
2021_final_LR_model.pickle 

Step 1. Install/import libraries

import pandas as pd 
import numpy as np 
import os 
import pickle 
import sklearn.metrics as metrics 
from sklearn.metrics import auc, plot_confusion_matrix, roc_curve, 
plot_roc_curve, accuracy_score, roc_auc_score, classification_report, 
confusion_matrix, PrecisionRecallDisplay, precision_recall_curve, 
RocCurveDisplay 
 
from sklearn.model_selection import GridSearchCV 
from sklearn.preprocessing import StandardScaler 
 



2-implementation-guidance.md 8/27/2021

148 / 198

from sklearn.model_selection import KFold, StratifiedKFold, 
train_test_split, GridSearchCV 
from sklearn.preprocessing import StandardScaler 
from sklearn.linear_model import LogisticRegressionCV, LogisticRegression 
from sklearn.dummy import DummyRegressor, DummyClassifier 
 
import seaborn as sns 
import matplotlib.pyplot as plt 

Step 2. Load numeric column list

with open('numeric_columns.pickle', 'rb') as f:   
    nu_cols = pickle.load(f) 

Step 3. Import a set of data and scale numeric columns

Each imputed set should be run separately, so only import one set at a time. Here, we import imputation 5.

    with open('complete5.pickle', 'rb') as f: 
        dataset = pickle.load(f) 

Keep only the training data subsets (1-6) since we are only running a cross validation to obtain the optimal

parameters for the model.

    X_train =  dataset[dataset.subset <= 6].copy().sort_values(by = 
'usrds_id') 

Step 4. Separate the labels (typically denoted as 'y') and save as an array.

    y_train = np.array(X_train.pop('died_in_90')) 

Step 6. Scale only the numeric columns with an sklearn library StandardScaler.

    scaler = StandardScaler() 
    X_train[nu_cols] = scaler.fit_transform(X_train[nu_cols]) 

Step 5. Save the training data as an array (rather than a pandas dataframe) and drop the non-feature

columns.

    X_train = np.array(X_train.drop(columns=
['subset','usrds_id','impnum']))  



2-implementation-guidance.md 8/27/2021

149 / 198

Step 6. Create the grid for the grid search

param_grid = [{ 
        'penalty':['l1','l2','elasticnet'], 
        'C': np.logspace(-3, 3, 10, 20), 
        'max_iter': [500, 1000, 1500], 
        'class_weight' :['balanced'] 
        }] 

Step 7. Instantiate the model

lr_model = LogisticRegression() 
clf = GridSearchCV( 
    lr_model,  
    param_grid=param_grid, 
    cv=5, 
    verbose=True,  
    n_jobs=-1,  
    scoring='average_precision' 
) 

Step 8. Fit the grid search 5-fold cross-validated logistic regression model

best_clf = clf.fit(X_train, y_train) 

Save the model.

with open('2021_LR_cv_clf_imp_'+str(imp)+'.pickle', 'wb') as picklefile:   
        pickle.dump(clf,picklefile) 

Step 9. Calculate predictions on the test set

pred_proba_onc_train = clf.predict_proba(X_train)[:,1] 

Step 10. Metrics and results Calculate and plot the roc_auc (area under the receiver operating characteristic

curve) for each fold.

train_score = roc_auc_score(y_train, pred_proba_onc_train) 



2-implementation-guidance.md 8/27/2021

150 / 198

Step 11. Import data and scale numeric cols

Train and evaluate the final model based on the best parameters from the cross-validation step. This must

be done for each of the 5 imputed datasets.

Load a set of data.

with open('./complete' + str(imp) + '.pickle', 'rb') as f: 
        dataset = pickle.load(f) 
 

Separate the training set (1-6)

train_x =  dataset[dataset.subset <= 6].copy().sort_values(by = 
'usrds_id') 

from the test set (7-9).

test_x = dataset[dataset.subset > 6].copy().sort_values(by = 'usrds_id') 

Separate the labels.

train_y = np.array(train_x.pop('died_in_90')) 
test_y = np.array(test_x.pop('died_in_90')) 

Scale the numeric columns by training the model on the training set and then using this to transform the

test set. Also remove the non-feature columns used to identify patients, imputations or subsets.

scaler = StandardScaler() 
train_x[nu_cols] = scaler.fit_transform(train_x[nu_cols]) 
train_x = np.array(train_x.drop(columns=['subset','usrds_id','impnum']))  
     
test_x[nu_cols] = scaler.transform(test_x[nu_cols]) 
test_x = np.array(test_x.drop(columns=['subset','usrds_id','impnum'])) 

Step 12. Instantiate the final logistic regression model

Use the best hyperparameters from the cross-validation for the final model.

lr_model_final = LogisticRegression(C=0.1,  
                                    penalty='l2',  
                                    max_iter=1000,  



2-implementation-guidance.md 8/27/2021

151 / 198

                                    solver='saga',  
                                    class_weight='balanced', 
                                    n_jobs=-1, 
                                    verbose=1, 
                                    random_state=499) 

Step 13. Train the model

Fit the model on the training data subsets.

logistic_model_final = lr_model_final.fit(train_x, train_y) 

Step 14. Evaluate the model

Evaluate the model by predicting on the test set and plot the outcome for each imputation.

pred_proba_onc_test = logistic_model_final.predict_proba(test_x) 

Step 15. Save the model

with open('2021_final_LR_model_test_pred_proba_imp_' + str(imp) + 
'.pickle', 'wb') as picklefile:   
        pickle.dump(pred_proba_onc_test, picklefile) 

Points to consider

�. Standardization allows for comparison of multiple features in different units and the penalty (i.e., L1)

will be applied more equally across the features. The model will learn the importance of features

better and faster when it isn't overwhelmed by a feature with a much larger range than the others.

�. Logistic regression models do not perform well when the outcome variable is imbalanced (or heavily

skewed towards one outcome). The outcome variables (survived, died_in_90) in the training dataset

was balanced through weighting (edit the weight parameter in the model to give more weight to the

minority class and less to the majority class). Balancing the data ensures that the models have

sufficient data from both of the outcome classes (died vs survived) on which to train. This results in a

better balance between sensitivity and specificity, which is important for this dataset where mortality

is predicted.

�. Due to the small set of hyperparameters to tune, this model does not require a GPU or even multiple

CPUs to run the cross-validation.

�. It is important to keep the test set separate when scaling, otherwise we are peeking at the test set

which will cause an invalid evaluation of the model.

6.3.3.3 Pool Results



2-implementation-guidance.md 8/27/2021

152 / 198

Steps for running the 3_pool_results_from_imputations.ipynb script

This script pools the probability predicions for each row/patient from all 5 imputations by averaging the

scores.

Input:

2021_final_LR_model_test_pred_proba_imp_1.pickle 
2021_final_LR_model_test_pred_proba_imp_2.pickle 
2021_final_LR_model_test_pred_proba_imp_3.pickle 
2021_final_LR_model_test_pred_proba_imp_4.pickle 
2021_final_LR_model_test_pred_proba_imp_5.pickle 

Output:

2021_final_LR_model_test_pred_proba_pooled.pickle 

Step 1. Libraries

import pickle 
import numpy as np 
import pandas as pd 
 
import psycopg2 
import sqlalchemy 
from sqlalchemy import create_engine 

Step 2. Import results from each imputation

with 
open('./results/2021_final_LR_model_test_pred_proba_imp_1.pickle','rb') as 
f:   
    imp1_pred = pickle.load(f) 
with 
open('./results/2021_final_LR_model_test_pred_proba_imp_2.pickle','rb') as 
f:   
    imp2_pred = pickle.load(f) 
with 
open('./results/2021_final_LR_model_test_pred_proba_imp_3.pickle','rb') as 
f:   
    imp3_pred = pickle.load(f) 
with 
open('./results/2021_final_LR_model_test_pred_proba_imp_4.pickle','rb') as 
f:   
    imp4_pred = pickle.load(f) 
with 



2-implementation-guidance.md 8/27/2021

153 / 198

open('./results/2021_final_LR_model_test_pred_proba_imp_5.pickle','rb') as 
f:   
    imp5_pred = pickle.load(f) 

Step 3. Keep only the predictions from the positive class

pooled = pd.DataFrame() 
pooled['imp1']=imp1_pred[:,1] 
pooled['imp2']=imp2_pred[:,1] 
pooled['imp3']=imp3_pred[:,1] 
pooled['imp4']=imp4_pred[:,1] 
pooled['imp5']=imp5_pred[:,1] 

Step 4. Calculate the mean and standard deviation of the predicted probability for the positive class

(died_in_90) for each patient/row.

pooled['score'] = pooled.mean(axis=1) 
pooled['std_'] = pooled.std(axis=1) 

Step 5. Import details from the medexpreesrd table

con = create_engine('postgresql://username:password@location/dbname') 
 
dataset = pd.read_sql_query('''SELECT  usrds_id, died_in_90, subset FROM 
medxpreesrd;''', con) 

Step 6. Sort the values so they are in the same order as when the LR was calculated and keep only the test

set.

dataset = dataset[dataset.subset > 6].copy().sort_values(by = 
'usrds_id').reset_index(drop=True) 

Step 7. Merge the details with the pooled predictions.



2-implementation-guidance.md 8/27/2021

154 / 198

pooled = pooled.merge(dataset, left_index=True, right_index=True) 

Step 8. Save

with open('./results/2021_final_LR_model_test_pred_proba_pooled.pickle', 
'wb') as picklefile:   
        pickle.dump(pooled, picklefile) 

6.3.3.4 Plot Results

Steps for running the 4_plot_lr_roc_auc.ipynb script

Input:

2021_final_LR_model_test_pred_proba_pooled.pickle 

Output:

lr_roc_auc_bw.png 
2021_lr_confusion_matrix.csv 

Step 1. Import libraries

import pandas as pd 
import numpy as np 
import pickle 
 
import sys 
#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
#import custom plotting functions 
from plot_functions import onc_calc_cm, onc_plot_roc 

Step 2. Load the pooled model results

with 
open('./results/2021_final_LR_model_test_pred_proba_pooled.pickle','rb') 
as f:   
    results = pickle.load(f) 
     



2-implementation-guidance.md 8/27/2021

155 / 198

results = results.loc[:,['score','died_in_90','subset','usrds_id']] 
results = results.rename(columns={'died_in_90':'y'}) 

Step 3. Plot the ROC AUC. This function onc_plot_roc is located and imported from

/onc_functions/plot_functions.py

def onc_plot_roc(y_true, y_pred, model_name, **kwargs): 
    '''  
    Plot the ROC AUC and return the test ROC AUC results. 
    INPUT: y_true, y_pred, model_name, **kwargs 
    ''' 
 
    #calc values for plot 
    false_positives, true_positives, threshold = roc_curve(y_true, y_pred) 
    c_roc_auc_score = auc(false_positives, true_positives) 
     
    #set figure params 
    fig1 = plt.figure(1, figsize=(12,30),dpi=400) 
    ax1 = plt.subplot2grid((7, 1), (0, 0), rowspan=2) 
     
    #plot reference line for chance 
    ax1.plot([0, 1], [0, 1], linestyle='--', lw=2, color='gray', 
        label='Chance', alpha=.8) 
     
    # plot AUC ROC 
    ax1.plot(false_positives, true_positives,  
        label=r'ROC (AUC = %0.3f)' % (c_roc_auc_score), 
        lw=2, alpha=.8, color = 'k') 
     
    # additional figure params 
    ax1.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05],) 
    ax1.legend(loc="lower right") 
    plt.xlabel('1-Specificity') 
    plt.ylabel('Sensitivity') 
    plt.rc('axes', labelsize=22)    # fontsize of the x and y labels 
    plt.rc('xtick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('ytick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('legend', fontsize=20)    # legend fontsize 
    # save plot 
    plt.savefig(model_name + "_roc_auc_bw.png",  dpi=400,  
transparent=True) 
    plt.show() 

onc_plot_roc( 
            y_true=results.y,  
            y_pred=results.score,  
            model_name='lr'); 



2-implementation-guidance.md 8/27/2021

156 / 198

Step 4. Print and save the performance metrics at multiple thresholds

def onc_calc_cm(y_true, y_predictions, range_probas=[0.1,0.5]): 
    ''' 
    Plot the confusion matrix and scores for multiple thresholds 
    ''' 
    df = pd.DataFrame(index = range_probas, 
                      columns=['threshold','sensitivity','specificity', 
                               
'likelihood_ratio_neg','likelihood_ratio_pos', 
                               
'tp','fp','tn','fn','total_survived','total_deceased',]) 
    for proba_threshold in range_probas: 
         
        cm = confusion_matrix(y_true, y_predictions > proba_threshold) 
        tn = cm[0][0] 
        fp = cm[0][1] 
         
        sensitivity = recall_score(y_true, y_predictions > 
proba_threshold) 
        specificity = tn / (tn + fp) 
 
        df.loc[proba_threshold, "threshold"] = proba_threshold 
        df.loc[proba_threshold,"sensitivity"] = sensitivity 
        df.loc[proba_threshold, "specificity"] = specificity 
        df.loc[proba_threshold, "likelihood_ratio_neg"] = (1-
sensitivity)/specificity 



2-implementation-guidance.md 8/27/2021

157 / 198

        df.loc[proba_threshold, "likelihood_ratio_pos"] = sensitivity/(1-
specificity) 
        df.loc[proba_threshold, "tp"] = cm[1][1] 
        df.loc[proba_threshold, "fp"] = fp 
        df.loc[proba_threshold, "tn"] = tn 
        df.loc[proba_threshold, "fn"] = cm[1][0] 
        df.loc[proba_threshold, "total_survived"] = np.sum(cm[0]) 
        df.loc[proba_threshold, "total_deceased"] = np.sum(cm[1]) 
    return df 

cm = onc_calc_cm( 
    results.y,  
    results.score,  
    range_probas=[.10,.20, .30, .40, .50]) 
cm.to_csv('./results/2021_lr_confusion_matrix.csv') 
cm 

6.3.3.5 Feature Importance

Steps for running the 5_lr_feature_importance.ipynb script

Plot the feature importance according to the final logistic regression model.

Input:

complete5.pickle 
2021_final_LR_model 

Output:

2021_top_bottom_plot.svg 
2021_top_log_regression_coef_20.csv 

Step 1. Load the final model



2-implementation-guidance.md 8/27/2021

158 / 198

with open('./results/2021_final_LR_model.pickle', 'rb') as picklefile:   
        logistic_model_final = pickle.load(picklefile) 

Step 2. Import feature names Import one imputation of the data to get feature names.

with open('./complete5.pickle', 'rb') as f: 
        dataset = pickle.load(f) 
feats = dataset.iloc[0:1,:] 

Drop the columns that were not used as features in the model.

ff = feats.drop(columns=
['usrds_id','subset','died_in_90','impnum']).copy() 
ff = ff.columns 
ff = np.array(ff) 

Step 3. Sort features by coeffecient score

Create a function to sort the features by their highest (tops) or lowest (bottom) coeffecient to see which

features were most important for the model to determine which class a patient was in. Here we get the

strongest scores regardless of whether they are positive or negative because we are interested in the

magnitude (difference from zero).

def get_most_important_features(r, model, n=5):  
 
    classes ={} 
    for class_index in range(model.coef_.shape[0]): 
        word_importances = [(el, r[i]) for i, el in 
enumerate(model.coef_[class_index])] 
        sorted_coeff = sorted(word_importances, key = lambda x : x[0], 
reverse=True) 
        tops = sorted(sorted_coeff[:n], key = lambda x : x[0]) 
        bottom = sorted_coeff[-n:] 
        classes[class_index] = { 
            'tops':tops, 
            'bottom':bottom 
        } 
    return classes 

Call function for the top and bottom 20 features.

importance = get_most_important_features(ff, logistic_model_final, 20) 



2-implementation-guidance.md 8/27/2021

159 / 198

Save the strongest scores (most negative and most positive).

top_scores = [a[0] for a in importance[0]['tops']] 
top_words = [a[1] for a in importance[0]['tops']] 
bottom_scores = [a[0] for a in importance[0]['bottom']] 
bottom_words = [a[1] for a in importance[0]['bottom']] 
top_coef = pd.DataFrame(columns=['vocab','coef']) 
top_coef['vocab'] = top_words + bottom_words 
top_coef['coef'] = top_scores + bottom_scores 
top_coef = top_coef.sort_values(by='coef',axis=0,ascending=False) 
top_coef.to_csv('./results/2021_top_log_regression_coef_20.csv') 

6.3.3.6 Fairness assessment



2-implementation-guidance.md 8/27/2021

160 / 198

ML models can perform differently for different categories of patients, so the LR model was assessed for

fairness, or how well the model performs for each category of interest (demographics—sex, race, and age—

as well as initial dialysis modality). Age is binned into the following categories based on clinician input and

an example in literature: 18-25, 26-35, 36-45, 46-55, 56-65, 66-75, 76-85, 86+. The USRDS predefined

categories for race, sex, and dialysis modality were used for the fairness assessment.

Steps for running the 6_logistic_regression_fairness.ipynb script

This script calculates the ROC AUC for specific groups of patients to assess the fairness of the final model.

Input:

medexpreesrd 
2021_final_LR_model_test_pred_proba_pooled.pickle 

Output:

complete_fair1.pickle 
2021_lr_fairness.csv 

Step 1. Import libraries

import numpy as np 
import pandas as pd 
import sys 
import pickle 
 
#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
from fairness import get_fairness_assessment 
 
import datetime 
dte = datetime.datetime.now() 
dte = dte.strftime("%Y") 
 
print('python-' + sys.version) 

Step 2. Get the columns of data required to compute fairness assessment and save them.

con = create_engine('postgresql://username:password@location/dbname') 
df = pd.read_sql_query('''SELECT usrds_id, died_in_90, inc_age, sex, 
dialtyp, race, hispanic, subset FROM medxpreesrd;''', con) 

Step 3. Save



2-implementation-guidance.md 8/27/2021

161 / 198

with open('complete_fair1.pickle', 'wb') as picklefile:   
    pickle.dump(df, picklefile) 

Step 4. Import the pooled results from the LR model

with open('./results/2021_final_LR_model_test_pred_proba_pooled.pickle', 
'rb') as f: 
        y_pred = pickle.load(f) 

Step 5. Merge the fairness details with the results

data = df.merge(y_pred, on=['usrds_id','died_in_90','subset']) 

Step 6. Calculate fairness. The function get_fairness_assessment is imported from the

/onc_functions/fairness.py file. This function calculates AUC and the confusion matrix from the model

prediction scores for specific groups.

def get_fairness_assessment(data, 
                            y_proba_col_name, 
                            y_true_col_name): 
     
    #turn the continuous age variable into age categories 
    df['agegroup'] = pd.cut(df.inc_age,  
                           bins=[17, 25, 35, 45, 55, 65, 75, 85, 90],  
                           labels=[1, 2, 3, 4, 5, 6, 7, 8]) 
     
    df = df.drop(columns=['inc_age']) 
     
    #replace NaNs with a large number that does not appear in the data, 
effectively creating another category for missing values 
    df.loc[:,['race','dialtyp','hispanic']] = df.loc[:,
['race','dialtyp','hispanic']].fillna(100.0, axis=1).copy() 
     
    #Identify the cols for the fairness assessment 
    fairness_cols = ['agegroup', 'sex','dialtyp', 'race','hispanic'] 
     
    #loop through all categories and values to get counts, auc, and 
confusion matrix 
    rows_list = [] 
    for col in fairness_cols: 
        for name, c in df.groupby(col): 
            fairness_dict = {} 
            fairness_dict['Feature'] = col 
            fairness_dict['Value'] = name 
            fairness_dict['Count'] = c.shape[0] 
 



2-implementation-guidance.md 8/27/2021

162 / 198

Step 7. Calculate the assessment and save the results.

fairness = get_fairness_assessment(data, 
                                  y_proba_col_name='score', 
                                  y_true_col_name='died_in_90') 
fairness.to_csv('./results/2021_lr_fairness.csv') 

            fairness_dict['AUC'] = roc_auc_score(c[y_true_col_name], 
c[y_proba_col_name]) 
            tn, fp, fn, tp = confusion_matrix(y_true = c[y_true_col_name],  
                                              y_pred = 
np.where(c[y_proba_col_name] >= 0.5, 1, 0)).ravel() 
            fairness_dict['TN'] = tn 
            fairness_dict['FP'] = fp 
            fairness_dict['FN'] = fn 
            fairness_dict['TP'] = tp 
            rows_list.append(fairness_dict) 
     
    #convert results from a list to a dataframe 
    df_fairness = pd.DataFrame(rows_list) 
    return df_fairness 



2-implementation-guidance.md 8/27/2021

163 / 198

Points to consider

Performing fairness assessment on the categories of interest gives additional insight into how the model

performs by different patient categories of interest (by demographics, etc.). Future researchers should

perform fairness assessments to better evaluate model performance, especially for models that may be

deployed in a clinical setting. Other methods of assessing fairness include evaluating true positives,

sensitivity, positive predictive value, etc. at various threshold across the different groups of interest, which

would allow selection of a threshold that balances model performance across the groups of interest.

6.3.3.7 Risk Assessment

Steps for running the 7_logistic_regression_risk.ipynb script

Input:

complete_fair1.pickle 
2021_final_LR_model_test_pred_proba_pooled.pickle 

Output:

2021_lr_risk_cat.csv 



2-implementation-guidance.md 8/27/2021

164 / 198

Step 1. Import libraries

import numpy as np 
import pandas as pd 
import pickle 
 
import sys 
#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
from risk import get_risk_categories 
 
print('python-' + sys.version) 
import datetime 
dte = datetime.datetime.now() 
dte = dte.strftime("%Y%m%d") 

Step 2. Import the details from the fairness assessment

with open('complete_fair1.pickle','rb') as f:   
    details = pickle.load(f) 

Step 3. Import the pooled results from the LR model

with open('./results/2021_final_LR_model_test_pred_proba_pooled.pickle', 
'rb') as f: 
        y_pred = pickle.load(f) 

Step 4. Merge the details with the results

data = df.merge(y_pred, on=['usrds_id','died_in_90','subset']) 

Step 5. Calculate risk. The function get_risk_categories is imported from the /onc_functions/risk.py file.

def get_risk_categories(dataset, y_proba_col_name, y_true_col_name): 
     
    test_x_pd = dataset[dataset.subset > 6].copy().sort_values(by = 
'usrds_id') 
    del dataset 
     
    df = test_x_pd.loc[:,[y_true_col_name,y_proba_col_name]] 
     
    #construct the risk categories from the predicted score 
    df['risk_categories'] = pd.cut(df[y_proba_col_name],         



2-implementation-guidance.md 8/27/2021

165 / 198

                                   bins=[-0.1, 0.09, 0.19, 0.29, 0.39, 
0.49, 0.59, 0.69, 0.79, 0.89, 0.99], 
                                   labels=['0-0.09', '0.1-0.19', '0.2-
0.29', '0.3-0.39', '0.4-0.49', 
                                           '0.5-0.59','0.6-0.69','0.7-
0.79','0.8-0.89','0.9-0.99']) 
     
    #loop through all the categories to get the predicted score 
    risk_list = [] 
    for name, c in df.groupby('risk_categories'): 
        risk_dict = {} 
        risk_dict['Risk Category'] = name 
        risk_dict['Count'] = c[y_true_col_name].shape[0] 
        risk_dict['Count Died in 90'] = c[y_true_col_name].sum() 
        risk_dict['Count Survived'] = c[y_true_col_name].shape[0]-
c[y_true_col_name].sum() 
        risk_dict['Percent Died in 90'] = 
c[y_true_col_name].sum()/c[y_true_col_name].shape[0] 
         
        risk_list.append(risk_dict) 
     
    df_risk = pd.DataFrame(risk_list) 
    return df_risk 

Run the function above

risk_cat = get_risk_categories(data, 
                               y_proba_col_name='score', 
                               y_true_col_name='died_in_90') 

Step 6. Save

risk_cat.to_csv('./results/' + str(dte) + '_lr_risk_cat.csv') 



2-implementation-guidance.md 8/27/2021

166 / 198

6.3.4 Artificial Neural Network--Multilayer Perceptron (MLP) Model

This section containts the code for the artificial neural net model - multilayer perceptron: MLP. The

repository contains ipython notebooks to train an artificial neural net to classify patients as survived or

died_in_90. Tensorflow is the library used to create and train the neural network. For a more detailed

explanation of neural networks or tensorflow, we recommend the tutorials at

https://www.tensorflow.org/tutorials.

Environment

These ipython notebooks can easily be run in a plain tensorflow docker container or used on their own in a

conda or other ipython environment.

The environment used for the MLP model was purchased on Amazon Web Services (AWS):

Name: p2.16xlarge 
vCPU: 64 
Cores: 32 
Threads per core: 2 
Architecture: x86_64 
Memory: 732 GB 
GPU: 16 
GPU Memory: 12 GB 
GPU Manufacturer: NVIDIA 
GPU Name: K80 
Operating System: Linux (Ubuntu 20.04 Focal Fossa) 
Network Performance: 25 GB 
Zone: US govcloud west 



2-implementation-guidance.md 8/27/2021

167 / 198

This code takes approximately 3 days to run all the sections.

The MLP model was trained using the python (version 3.6.9) tensorflow (version 2.4.1) library and cross

validation methods were from the Python (version 3.6.9) library scikit learn (version 0.24.1) and the following

libraries:

Python library Version

tensorflow 2.4.1

scikit-learn 0.24.1

numpy 1.19.5

pandas 1.1.5

matplotlib 3.3.3

Points to consider

An instance with GPUs can be utilized for tuning a large number of hyperparameters, as done here. If

multiple cores or a GPU are not available, recommend choosing only a few hyperparameters to tune at one

time.

6.3.4.1 Run Docker container (optional)

Run the following command in the same directory where you store the jupyter notebook (the repository).

This will first pull the container, then instantiate it and mount the current directory to allow you to access the

notebooks and also save any changes.

Step 1. Use the following code to run the container on your local machine:

sudo docker run -it -v "$PWD":/tf/notebooks --name onc_tf_1 
tensorflow/tensorflow:latest-jupyter  

Step 2. Then open a browser and go to the default port mapping

localhost:8888 

Step 3. There you will see this directory of notebooks that you can open and run.

6.3.4.2 Run on a server (i.e. AWS)

Ports will need to be mapped when running the container. In our case 8080 is the port that is open and we

can access it from the local machine at that port if connected to the server

sudo docker run -it -p 8080:8888 -v "$PWD":/tf/notebooks --name onc_tf_1 
tensorflow/tensorflow:latest-jupyter  



2-implementation-guidance.md 8/27/2021

168 / 198

To utilize a GPU (which can be useful for the cross-validation step).

sudo docker run -it -p 8080:8888 -v "$PWD":/tf/notebooks --name onc_tf_gpu 
tensorflow/tensorflow:latest-gpu-jupyter 

Then you can access the current directory and notebooks at https://[my_aws_ec2_address]:8080

Points to consider

To run the cross-validation hyperparameter tuning with a GPU, run it from a python file (a conda

environment worked) not the ipython jupyter notebook.

6.3.4.3 Pre-processing the data

The preprocessing is the same as for the logistic regression model and includes one hot encoding of

categorical features and removal of features with missing values in lieu of the binary features.

Steps for running the 1_mlp_preprocessing.ipynb script

Input:

medexpressesrd 
micecomplete_pmm 
numeric_columns.pickle 

Output:

complete1.pickle 
complete2.pickle 
complete3.pickle 
complete4.pickle 
complete5.pickle 

Step 1. Install and import libraries

Install the python packages into the docker container (if running in a container) and import them into the

notebook.

!pip install --upgrade pip 
!pip install --upgrade scikit-learn 
!pip install pandas 
!pip install psycopg2-binary 
!pip install sqlalchemy 
!pip install seaborn 
 



2-implementation-guidance.md 8/27/2021

169 / 198

import psycopg2 
import sqlalchemy 
from sqlalchemy import create_engine 
 
# other libraries 
import numpy as np 
import pandas as pd 
import sys 
import pickle 
 
#plotting 
import matplotlib.pyplot as plt 
import seaborn as sns 
%matplotlib inline 

Step 2. Connect to the Postgres database

The credentials for the Postgres database will be inserted here.

con = create_engine('postgresql://username:password@address/dbname') 

Step 3. Get data

Load the full non-imputed data found in the medexpressesrd table from Postgres database.

df = pd.read_sql_query('''SELECT * FROM medxpreesrd;''', con) 

Get counts for each class (this gets used lated when we train the model)

neg_class_count, positive_class_count = np.bincount(df['died_in_90']) 

The labels are 2 integers, 0 (survived) or 1 (deceased). These correspond to the class. Note that we have a

class imbalance with deceased being the minority class.

Label Class Count 
0 survived 1064112 
1 deceased 86083 



2-implementation-guidance.md 8/27/2021

170 / 198

Step 4. Remove missing data

Neural networks models cannot handle missing values. The columns to remove are loaded at the top of the

notebook in the variable vars_to_remove and were chosen based on clinician input.

For this dataset, the columns of pre-ESRD claims data that have missing values (claim counts, etc) were

removed but kept the binary features from the Medicare pre-ESRD claims, which include indicators for

claims in each setting, indicator for pre-ESRD claims, and indicators for each diagnosis group.

df.drop(columns=vars_to_remove,inplace=True) 

Step 5. Encode categorical features

One variable dial_train_time was created from taking the difference between 2 dates in the medevid table.

This feature was the only non-claims-related feature to have a large number of missing values, but we did

not want to drop it so we encoded it in the following way

a number greater than zero=1

0=0

missing=3



2-implementation-guidance.md 8/27/2021

171 / 198

Thus, the feature is turned into a categorical rather than numeric variable to retain some (though not all)

information.

df.dial_train_time = df.dial_train_time.fillna(-1) 
df.dial_train_time=df.dial_train_time.astype(int).clip(lower=-1,upper=1) 
df.dial_train_time=df.dial_train_time.astype(str).replace("-1","na") 

Use dummy variables for categorical variables (loaded at the top of the notebook).

Get the list of categorical variables that have more then 2 levels, then encode using pandas get_dummies

function.

dummy_list = [] 
for col in categoryVars: 
    u = len(df[col].unique()) 
    if u>2: 
        dummy_list.append(col) 
 
df = pd.concat([df, 
pd.get_dummies(df.loc[:,dummy_list].astype('str'))],axis=1).drop(columns=d
ummy_list,axis=1) 

Step 6. Load imputed data

Import imputed data micecomplete_pmm table from Postgres.

imp = pd.read_sql_query('''SELECT *, row_number()  
 OVER(PARTITION BY usrds_id) AS impnum  
 FROM micecomplete_pmm 
''', con) 

Step 7. Remove the 5 columns from the original data

df.drop(columns=["height", "weight", "bmi", "sercr", "album", "gfr_epi", 
"heglb"],inplace=True) 
df.shape = (1150195, 290) 

Step 8. Separate the imputed data into 5 dataframes

Separating the 5 imputed datasets into different dataframes makes it easier to store, load, and compute.

imp1 = imp[imp.impnum==1] 
imp2 = imp[imp.impnum==2] 
imp3 = imp[imp.impnum==3] 



2-implementation-guidance.md 8/27/2021

172 / 198

imp4 = imp[imp.impnum==4] 
imp5 = imp[imp.impnum==5] 

Step 9. Merge the encoded data with each of the 5 imputed datasets

This is a left merge on the non-imputed data based on the usrds_id and the subset number.

complete1 = pd.merge(df, imp1, how='left', on=["usrds_id","subset"]) 
complete2 = pd.merge(df, imp2, how='left', on=["usrds_id","subset"]) 
complete3 = pd.merge(df, imp3, how='left', on=["usrds_id","subset"]) 
complete4 = pd.merge(df, imp4, how='left', on=["usrds_id","subset"]) 
complete5 = pd.merge(df, imp5, how='left', on=["usrds_id","subset"]) 
 
complete5.shape 
(1150195, 298) 

Step 10. Save the data

Save each set to the current directory as a pickle file (a file type that works well for pandas dataframes).

with open('complete1.pickle', 'wb') as picklefile:   
    pickle.dump(complete1, picklefile) 
with open('complete2.pickle', 'wb') as picklefile:   
    pickle.dump(complete2, picklefile) 
with open('complete3.pickle', 'wb') as picklefile:   
    pickle.dump(complete3, picklefile) 
with open('complete4.pickle', 'wb') as picklefile:   
    pickle.dump(complete4, picklefile) 
with open('complete5.pickle', 'wb') as picklefile:   
    pickle.dump(complete5, picklefile) 

Points to consider

The approach used to handle missing values is dependent on the dataset and the features in the dataset.

Clinical expertise is crucial in understanding the impact of missing values and whether or not they should be

imputed, removed, or replaced.

6.3.4.4 Hyperparameter tuning

This script computes the 5-fold cross-validation gridsearch to find the best hyperparameters for the MLP

model. Keras (tensorflow) is used to create the layers of the neural net and take advantage of multiple GPUs

(if available). The gridsearch cross-validation is computed using with sci-kit learn GridSearchCV. The class

imbalance is handled by using the class_weights parameter. This hyperparameter cannot be tuned as part

of the grid search and the function mlp_cv must be run for each set of weights.

Steps for running the 2_mlp_cross_val.ipynb script

Input:



2-implementation-guidance.md 8/27/2021

173 / 198

build_mlp.py 
complete1.pickle 
complete2.pickle 
complete3.pickle 
complete4.pickle 
complete5.pickle 
numeric_columns.pickle 

-Output: x = [1,2,3,4,5]

2021_grid_best_params_imp_x_weight_m.pickle 
2021_grid_best_auc_imp_x_weight_m.pickle 
2021_grid_cv_results_imp_x_weight_m.pickle  
 
2021_grid_best_params_imp_x_weight_5.pickle 
2021_grid_best_auc_imp_x_weight_5.pickle 
2021_grid_cv_results_imp_x_weight_5.pickle  
 
2021_grid_best_params_imp_x_weight_10.pickle 
2021_grid_best_auc_imp_x_weight_10.pickle 
2021_grid_cv_results_imp_x_weight_10.pickle  
 
2021_grid_best_params_imp_x_weight_20.pickle 
2021_grid_best_auc_imp_x_weight_20.pickle 
2021_grid_cv_results_imp_x_weight_20.pickle  

Step 1. Import packages

Tensorflow is a popular framework for training a neural network and keras is a high-level API used for ease

of access to the tensorflow functions.

!pip install --upgrade scikit-learn 
!pip install pandas 
!pip install pyyaml h5py  
!pip install seaborn 
 
# TensorFlow and tf.keras 
import tensorflow as tf 
from tensorflow.keras import layers 
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier 
from tensorflow.keras.optimizers import Adam, SGD, Adamax 
 
import sklearn.metrics as metrics 
from sklearn.metrics import auc, plot_roc_curve, roc_curve, 
mean_squared_error, accuracy_score, roc_auc_score, classification_report, 
confusion_matrix, log_loss 
from sklearn.model_selection import GridSearchCV 
from sklearn.preprocessing import StandardScaler 



2-implementation-guidance.md 8/27/2021

174 / 198

import sklearn 
 
# load custom function for building the NN 
from build_mlp import build_mlp  
 
# other libraries 
import numpy as np 
import pandas as pd 
import sys 
import pickle 
 
#plotting 
import matplotlib.pyplot as plt 
import seaborn as sns 
%matplotlib inline 

Step 2. Import list of numeric columns

The following code snippet obtains the list of numeric columns to be scaled

with open('numeric_columns.pickle', 'rb') as f:   
    nu_cols = pickle.load(f) 

Step 3. Import a set of data and scale numeric columns

Each imputed set should be run separately, so only import one set at a time. The example below imports

imputation 5:

with open('complete5.pickle', 'rb') as f: 
        dataset = pickle.load(f) 

Keep only the training data subsets (1-6) since we are only running a cross validation to obtain the optimal

parameters for the model.

X_train =  dataset[dataset.subset <= 6].copy().sort_values(by = 
'usrds_id') 

Separate the labels (typically denoted as 'y') and save as an array.

y_train = np.array(X_train.pop('died_in_90')) 

Scale only the numeric columns with an sklearn library StandardScaler.



2-implementation-guidance.md 8/27/2021

175 / 198

scaler = StandardScaler() 
X_train[nu_cols] = scaler.fit_transform(X_train[nu_cols]) 

Save the training data as an array (rather than a pandas dataframe) and drop the non-feature columns.

    X_train = np.array(X_train.drop(columns=
['subset','usrds_id','impnum']))  

Step 4. Create the grid for the grid search

Insert the different parameters you want to test when doing the cross validation. For a detailed explanation

of each parameter, see the section on the Build_mlp.py script below.

        neurons = [16, 32, 64, 128] 
        layers = [1, 2] 
        kernel_regularizer = ['l2'] 
        dropout_rate = [ 0.1, 0.2, 0.4, 0.5, 0.6] 
        learn_rate = [.001, .0001, .0002] 
        activation = ['relu', 'sigmoid', 'tanh'] 
        optimizer = ['Adam'] 
        output_bias = [None] 
        epochs = [10, 20] # 1mill/256=4000 steps for one pass thru dataset 
        batches = [512, 256] 

Step 5. Set parameters for early stopping (to optimize time)

Early stopping for the epochs based on the auc_pr (area under the precision-recall curve).

early_stopping = tf.keras.callbacks.EarlyStopping( 
                            monitor='auc_pr' , 
                            verbose=1, 
                            patience=10, 
                            mode='max', 
                            restore_best_weights=True) 

Step 6. Build layers

Use the Keras wrapper for scikitlearn and our custom build_mlp function imported from the custom python

script build_mlp.py

 weighted_model_skl = KerasClassifier(build_fn=build_mlp,  
                                      verbose=0) 



2-implementation-guidance.md 8/27/2021

176 / 198

Points to consider

Standardization and scaling of numeric features allows for comparison of multiple features in different units.

The model will learn the importance of features better and faster when it is not overwhelmed by a feature

with a much larger range than the others.

6.3.4.5 Building layers and compiling the model

This script is used to create the neural network by building the layers and then compiling the model. This

model will consist of a few simple layers (Dense and Dropout) to illustrate the concepts and give an

example.

Wrapper function

In the actual notebook, the full code is wrapped in a function (mlp_cv) for ease of running the cross-

validation with the different weightings and each imputation dataset. An example of the code for imputation

5 is included below:

mlp_cv(class_weight_20, weight_name=20, imputation=5) 

Steps for running the build_mlp.py script

Step 1. Import tensorflow packages to create the layers of the network.

import tensorflow as tf 
from tensorflow.keras.layers import Dense, Dropout 
from tensorflow.keras.layers.experimental import preprocessing 
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier 
from tensorflow.keras.optimizers import Adam 
from tensorflow.keras.constraints import max_norm 
from tensorflow.keras.metrics import AUC 

Step 2. Select metrics to measure the loss and the accuracy of the model.

Multiple metrics can be reported as we have done here.

METRICS = [ 
      tf.keras.metrics.TruePositives(name='tp'), 
      tf.keras.metrics.FalsePositives(name='fp'), 
      tf.keras.metrics.TrueNegatives(name='tn'), 
      tf.keras.metrics.FalseNegatives(name='fn'),  
      tf.keras.metrics.BinaryAccuracy(name='accuracy'), 
      tf.keras.metrics.Precision(name='precision'), 
      tf.keras.metrics.Recall(name='recall'), 
      tf.keras.metrics.AUC(name='auc'), 
      tf.keras.metrics.AUC(name='auc_pr', 
            num_thresholds=200, 
            curve="PR", 



2-implementation-guidance.md 8/27/2021

177 / 198

            summation_method="interpolation", 
            dtype=None, 
            thresholds=None, 
            multi_label=False, 
            label_weights=None) 
] 

Step 3. Define a function to take in the parameters for building the network.

def build_mlp( 
    layers=2, 
    neurons=16, 
    output_bias=None,  
    optimizer='Adam', 
    activation='relu', 
    learn_rate=.0002, 
    dropout_rate=0.2, 
    kernel_regularizer='l2', 
    metrics=METRICS 
): 
    if output_bias is not None: 
        output_bias = tf.keras.initializers.Constant(output_bias) 
    model = tf.keras.Sequential() 

This loop allows for us to test one or more identical dense layers based on the layers argument. Dense or

fully connected layers consist of the number of neurons(nodes) defined in the neurons argument, an

activation function defined by activation, an input shape of 294 (this is specific to our data since we always

have 294 features or columns. If a feature is added or removed, this number needs to reflect that), and a

kernel regularizer defined by the kernel_regularizer argument.

for i in range(layers): 
        model.add(Dense( 
                        neurons,  
                        activation=activation, 
                        input_shape=(294,), 
                        kernel_regularizer=kernel_regularizer)) 

A Dropout layer is used to avoid overfitting when testing the model. The parameter dropout_rate

determines the rate.

model.add(Dropout(dropout_rate)) 

The final layer is a dense layer with a sigmoid activation function to give the probablility of each class for

each sample.



2-implementation-guidance.md 8/27/2021

178 / 198

model.add(Dense( 
                1,  
                activation='sigmoid', 
                bias_initializer=output_bias)) 

Step 4. Set the final arguments for compiling the model.

Optimizer —This is how the model is updated based on the data it sees and its loss function.

Loss function —This measures how accurate the model is during training. You want to minimize this

function to "steer" the model in the right direction. BinaryCrossentropy() is used because we are

training a binary classification model.

Metrics —Used to monitor the training and testing steps. Here we use multiple metrics that are

printed out.

    opt = optimizer(lr=learn_rate) 
     
    model.compile( 
      optimizer=opt, 
      loss=tf.keras.losses.BinaryCrossentropy(), 
      metrics=metrics) 
 
    return model 

Step 5. Instantiate the grid search cross validation model

Evaluate our list of parameters using the sci-kit learn package GridSearchCV to run a 5-fold cross

validation. This will result in the best combination of these parameters according to our score (which is set

to average_precision to optimize precision and recall). Multiple processors can be taken advantage of by

setting n_jobs=-1. Training many different parameters will take a significant amount of time that depends on

the number of processors and size of the data.

grid = GridSearchCV( 
                weighted_model_skl, 
                param_grid=params,  
                cv=5, 
                scoring='average_precision', 
                return_train_score=True, 
                n_jobs=-1 
            ) 

Step 6. Class imbalance and fit the model to the data

When fitting the model to the training data, the class imbalanced can be set using the class_weight

parameter.



2-implementation-guidance.md 8/27/2021

179 / 198

grid_result = grid.fit( 
                X_train,  
                y_train,  
                class_weight=selected_class_weight, 
                callbacks=[early_stopping] 
            ) 

Note that when testing multiple class weights, this must be done by fitting a new cross-validated model

(running the entire script) for each different set of class weights to be tested, rather than as a

hyperparameter in the model. Multiple class weights were tested on the data.

Classes: 0=survived (negative class), 1=died_in_90 (positive class).

total = 1150195 
positive_class_count =  86083      #(7.48% of total) 
neg_class_count = 1064112     #(92.52% of total) 
# Scaling by total/2 helps keep the loss to a similar magnitude. 
# The sum of the weights of all examples stays the same. 
weight_for_0 = (1 / neg_class_count)*(total)/2.0  
weight_for_1 = (1 / positive_class_count)*(total)/2.0 
 
class_weight_m = {0: weight_for_0, 1: weight_for_1} 

A range of stronger weights the minority class.

class_weight_5 = {0: 1, 1: 5} 
class_weight_10 = {0: 1, 1: 10} 
class_weight_20 = {0: 1, 1: 20} 

Step 7. Summarize and print results

means = grid_result.cv_results_['mean_test_score'] 
stds = grid_result.cv_results_['std_test_score'] 
params = grid_result.cv_results_['params'] 
 
for mean, stdev, param in zip(means, stds, params): 
                    print("%f (%f) with: %r" % (mean, stdev, param)) 
print("Best: %f using %s" % (grid_result.best_score_, 
grid_result.best_params_)) 

Step 8. Save results

Save the result for each set of class weight parameters (to select the one with the best score) and for each

dataset (each imputation) and review the best_params_ from each one to check for similarity.



2-implementation-guidance.md 8/27/2021

180 / 198

    with open('./results/2021_grid_best_params_imp_' + str(imputation) + 
'_weight_' + str(weight_name) + '.pickle', 'wb') as f:   
                    pickle.dump(grid_result.best_params_, f) 
 
    with open('./results/2021_grid_best_auc_imp_' + str(imputation) + 
'_weight_' + str(weight_name)  + '.pickle','wb') as f:   
                    pickle.dump(grid_result.best_score_, f) 
 
    with open('./results/2021_grid_cv_results_imp_' + str(imputation) + 
'_weight_' + str(weight_name) + '.pickle','wb') as f:   
                    pickle.dump(grid_result.cv_results_, f) 

Points to consider

�. One imputed set of data was used to tune hyperparameters which reduced computational time while

effectively tuning the parameters.

�. Due to the severe class imbalance in the dataset, the AUC ROC tends to be high while recall is low. It

is well-known that precision-recall plots are more informative than AUC ROC plots when training a

binary classification model on severely imbalanced data; therefore, the average precision metric from

sklearn (https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html#sklearn.metrics.a

verage_precision_score) was used to tune the MLP model.

6.3.4.6 Final MLP Model

Steps for running the 3_mlp_final_model.ipynb script

This script trains and evaluates the final MLP model based on the best parameters from the hyperparameter

tuning/cross-validation step.

Input:



2-implementation-guidance.md 8/27/2021

181 / 198

complete1.pickle 
complete2.pickle 
complete3.pickle 
complete4.pickle 
complete5.pickle 
numeric_columns.pickle 

Output: x=[1-5]

2021_MLP_final_results_imp_x.pickle 
2021_MLP_final_model_imp_x.h5 
2021_MLP_final_eval_imp_x.pickle 
 
2021_MLP_final_fpr.pickle 
2021_MLP_final_tpr.pickle 
2021_MLP_final_auc.pickle 
 
2021_MLP_final_ytest_all.pickle 
2021_MLP_final_ypred_all.pickle 
 
2021_MLP_final_prec.pickle 
2021_MLP_final_recall.pickle 
2021_MLP_final_avgprec_thresh.pickle 
2021_MLP_final_avgprec_score.pickle 

Step 1. Install and import libraries

!pip install --upgrade scikit-learn 
!pip install pandas 
!pip install pyyaml h5py  
!pip install seaborn 
 
# TensorFlow and tf.keras 
import tensorflow as tf 
from tensorflow.keras.layers import Dense, Dropout 
from tensorflow.keras.optimizers import Adam 
 
import sklearn 
from sklearn.metrics import auc, average_precision_score, roc_curve, 
precision_recall_curve, roc_auc_score, confusion_matrix 
from sklearn.preprocessing import StandardScaler 
 
# other libraries 
import numpy as np 
import pandas as pd 
import sys 
import pickle 
 
#plotting 



2-implementation-guidance.md 8/27/2021

182 / 198

import matplotlib.pyplot as plt 
import seaborn as sns 
%matplotlib inline 

Step 2. Import list of numeric columns

Get list of columns to be scaled

with open('numeric_columns.pickle', 'rb') as f:   
    nu_cols = pickle.load(f) 

Step 3. Import data

Import the data from a single imputation.

imp=5 
with open('complete' + str(imp) + '.pickle', 'rb') as f: 
        dataset = pickle.load(f) 

Separate the training set (subsets 0-6).

X_train =  dataset[dataset.subset <= 4].copy().sort_values(by = 
'usrds_id') 

Separate the labels.

y_train = np.array(X_train.pop('died_in_90')) 

Separate the validation set (subsets 5-6). This validation set gets used as the 'test' set of data while the

model is being trained to avoid ever 'looking' at the test set until we evaluate the model.

X_val = dataset[(dataset.subset == 6) | (dataset.subset == 
5)].copy().sort_values(by = 'usrds_id') 

Separate labels.

y_val = np.array(X_val.pop('died_in_90')) 



2-implementation-guidance.md 8/27/2021

183 / 198

Separate the test set (subsets 7 8 9) for evaluating the model to see how well it performs on new data.

Sorting by usrds_id is important so that we can calculate the fairness (or you could just run the predictions

again and save the order).

X_test =  dataset[dataset.subset > 6].copy().sort_values(by = 'usrds_id') 

Separate labels.

y_test = np.array(X_test.pop('died_in_90')) 

Scale only the numeric columns with an sklearn library StandardScaler by fitting the scaler model on the

training set, and use this model and transform on the validation and test sets. Then drop the non-feature

columns and save as an array.

scaler = StandardScaler() 
X_train[nu_cols] = scaler.fit_transform(X_train[nu_cols]) 
X_train = np.array(X_train.drop(columns=['subset','usrds_id','impnum']))  
 
X_val[nu_cols] = scaler.transform(X_val[nu_cols]) 
X_val = np.array(X_val.drop(columns=['subset','usrds_id','impnum']))  
     
X_test[nu_cols] = scaler.transform(X_test[nu_cols]) 
X_test = np.array(X_test.drop(columns=['subset','usrds_id','impnum']))    

Step 3. Build final model

Build the final model based on the best hyperparameters from the previous cross-validation step. First set

the metric(s) to report.

METRICS = [ 
      tf.keras.metrics.TruePositives(name='tp'), 
      tf.keras.metrics.FalsePositives(name='fp'), 
      tf.keras.metrics.TrueNegatives(name='tn'), 
      tf.keras.metrics.FalseNegatives(name='fn'),  
      tf.keras.metrics.BinaryAccuracy(name='accuracy'), 
      tf.keras.metrics.Precision(name='precision'), 
      tf.keras.metrics.Recall(name='recall'), 
      tf.keras.metrics.AUC(name='auc'), 
      tf.keras.metrics.AUC(name='auc_pr', 
            num_thresholds=200, 
            curve="PR", 
            summation_method="interpolation", 
            dtype=None, 
            thresholds=None, 
            multi_label=False, 



2-implementation-guidance.md 8/27/2021

184 / 198

            label_weights=None) 
] 

Define a function to create the model layers and complie the model. Insert the best hyperparameters from

the cross validation tuning. For details on each line, see the above explanation of the build_mlp.py script.

def final_build_mlp( 
    layers=2, 
    neurons=16, 
    output_bias=None,  
    optimizer='Adam', 
    activation='relu', 
    learn_rate=.0002, 
    dropout_rate=0.2, 
    kernel_regularizer='l2', 
    metrics=METRICS 
): 
         
    model = tf.keras.Sequential() 
     
    #add 2 dense layers 
    for i in range(layers): 
        model.add(Dense( 
                        neurons,  
                        activation=activation, 
                        input_shape=(294,), 
                        kernel_regularizer=kernel_regularizer) 
        )                        
    model.add(Dropout(dropout_rate)) 
    model.add(Dense( 
                     1,  
                     activation='sigmoid', 
                     bias_initializer=output_bias)) 
    opt = Adam(lr=learn_rate) 
    model.compile( 
      optimizer=opt, 
      loss=tf.keras.losses.BinaryCrossentropy(), 
      metrics=metrics) 
 
    return model 

Step 4. Instantiate the final model

final_model = final_build_mlp() 

Step 5. Train (fit) the final model

Set the optimal parameters for fitting the model based on results from the cross-validation.



2-implementation-guidance.md 8/27/2021

185 / 198

class_weight_10 = {0: 1, 1: 10} 
epochs_final = 10 
batches = 256 

Fit the model to the training and validation data.

final_history = final_model.fit( 
        X_train, 
        y_train, 
        batch_size=batches, 
        epochs=epochs_final, 
        validation_data=(X_val, y_val), 
        class_weight=class_weight_10) 

Step 6. Get predictions on the training set from the model

train_predictions_final = final_model.predict( 
                                              X_train,  
                                              batch_size=batches 
    ) 

Step 7. Evaluate the final model

Evaluate the final model that has been trained on the new data (test set).

test_predictions_final = final_model.predict( 
                                              X_test,  
                                              batch_size=batches 
                                                ) 
final_eval = final_model.evaluate( 
                                  X_test,  
                                  y_test, 
                                  batch_size=batches,  
                                  verbose=1 
                                    ) 

Print results of test set.

    res = {} 
    for name, value in zip(final_model.metrics_names, final_eval): 
        print(name, ': ', value) 
        res = {name : value} 



2-implementation-guidance.md 8/27/2021

186 / 198

Points to consider

Standardization and scaling of numeric features allows for comparison of multiple features in different units.

The model will learn the importance of features better and faster when it isn't overwhelmed by a feature

with a much larger range than the others. Scaling and standardization should be done separately for

training and test sets so that we are not looking at the test set.

Neural network models are computationally expensive and there are many parameters to tune and decisions

to make. It is beneficial to consult with other experts and test the code before running the full set of data.

Multiple CPUs or GPUs can speed up computation time for the cross validation hyperparameter tuning step.

6.3.4.7 Pool Results

Steps for running 4_pool_results_from_imputations.ipynb

Input:

medexpreesrd 
2021_MLP_final_ytest_all.pickle 
2021_MLP_final_ypred_all.pickle 

Output:

2021_final_MLP_model_test_pred_proba_pooled.pickle 

Step 1. Import libraries

import pickle 
import numpy as np 
import pandas as pd 
 
import psycopg2 
import sqlalchemy 
from sqlalchemy import create_engine 

Step 2. Import results from the MLP model

with open('./results/2021_MLP_final_ytest_all.pickle', 'rb') as f:   
    y_true_mlp = pickle.load(f) 
     
with open('./results/2021_MLP_final_ypred_all.pickle', 'rb') as 
picklefile:   
    y_pred_proba_mlp = pickle.load(picklefile) 



2-implementation-guidance.md 8/27/2021

187 / 198

Step 3. Reformat into a pandas dataframe. This makes the data easier to work with.

The index for the values is zero here b/c we only saved it for the positive class, otherwise it would be 1

pooled = pd.DataFrame() 
pooled['imp1']=y_pred_proba_mlp[0][:,0]  
pooled['imp2']=y_pred_proba_mlp[1][:,0]  
pooled['imp3']=y_pred_proba_mlp[2][:,0]  
pooled['imp4']=y_pred_proba_mlp[3][:,0]  
pooled['imp5']=y_pred_proba_mlp[4][:,0]  

Step 4. Calculate the mean and standard deviation of the predicted probability for the positive class

(died_in_90) for each patient/row.

pooled['score'] = pooled.mean(axis=1) 
pooled['std_'] = pooled.std(axis=1) 

Step 5. Import the details from the original data

Enter your credentials for your postgres database.

con = create_engine('postgresql://username:password@location/dbname') 
 
dataset = pd.read_sql_query('''SELECT  usrds_id, died_in_90, subset FROM 
medxpreesrd;''', con) 

Step 6. Sort the values so they are in the same order as when the MLP model was calculated and keep only

the test set.

dataset = dataset[dataset.subset > 6].copy().sort_values(by = 
'usrds_id').reset_index(drop=True) 

Step 7. Merge the details with the pooled predictions.

pooled = pooled.merge(dataset, left_index=True, right_index=True) 

Step 8. Save

with open('./results/2021_final_MLP_model_test_pred_proba_pooled.pickle', 
'wb') as picklefile:   
        pickle.dump(pooled, picklefile) 



2-implementation-guidance.md 8/27/2021

188 / 198

6.3.4.8 Plot Results

Steps for running the 5_plot_mlp_roc_auc.ipynb script

Input:

2021_final_MLP_model_test_pred_proba_pooled.pickle 

Output:

mlp_roc_auc_bw.png 
2021_mlp_confusion_matrix.csv 

Step 1. Import libraries

import pandas as pd 
import numpy as np 
import pickle 
 
import sys 
#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
#import custom plotting functions 
from plot_functions import onc_calc_cm, onc_plot_roc, 
onc_plot_precision_recall 

Step 2. Load results from the pooled model results

with open('./results/2021_final_MLP_model_test_pred_proba_pooled.pickle', 
'rb') as f: 
        results = pickle.load(f) 
 
results = results.loc[:,['score','died_in_90','subset','usrds_id']] 
results = results.rename(columns={'died_in_90':'y'}) 

Step 3. Plot the ROC AUC. This function onc_plot_roc is located and imported from

/onc_functions/plot_functions.py

def onc_plot_roc(y_true, y_pred, model_name, **kwargs): 
    '''  
    Plot the ROC AUC and return the test ROC AUC results. 
    INPUT: y_true, y_pred, model_name, **kwargs 



2-implementation-guidance.md 8/27/2021

189 / 198

    ''' 
 
    #calc values for plot 
    false_positives, true_positives, threshold = roc_curve(y_true, y_pred) 
    c_roc_auc_score = auc(false_positives, true_positives) 
     
    #set figure params 
    fig1 = plt.figure(1, figsize=(12,30),dpi=400) 
    ax1 = plt.subplot2grid((7, 1), (0, 0), rowspan=2) 
     
    #plot reference line for chance 
    ax1.plot([0, 1], [0, 1], linestyle='--', lw=2, color='gray', 
        label='Chance', alpha=.8) 
     
    # plot AUC ROC 
    ax1.plot(false_positives, true_positives,  
        label=r'ROC (AUC = %0.3f)' % (c_roc_auc_score), 
        lw=2, alpha=.8, color = 'k') 
     
    # additional figure params 
    ax1.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05],) 
    ax1.legend(loc="lower right") 
    plt.xlabel('1-Specificity') 
    plt.ylabel('Sensitivity') 
    plt.rc('axes', labelsize=22)    # fontsize of the x and y labels 
    plt.rc('xtick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('ytick', labelsize=15)    # fontsize of the tick labels 
    plt.rc('legend', fontsize=20)    # legend fontsize 
    # save plot 
    plt.savefig(model_name + "_roc_auc_bw.png",  dpi=400,  
transparent=True) 
    plt.show() 

onc_plot_roc( 
            y_true=results.y,  
            y_pred=results.score,  
            model_name='mlp'); 



2-implementation-guidance.md 8/27/2021

190 / 198

Step 4. Print and save the performance metrics at multiple thresholds

def onc_calc_cm(y_true, y_predictions, range_probas=[0.1,0.5]): 
    ''' 
    Plot the confusion matrix and scores for multiple thresholds 
    ''' 
    df = pd.DataFrame(index = range_probas, 
                      columns=['threshold','sensitivity','specificity', 
                               
'likelihood_ratio_neg','likelihood_ratio_pos', 
                               
'tp','fp','tn','fn','total_survived','total_deceased',]) 
    for proba_threshold in range_probas: 
         
        cm = confusion_matrix(y_true, y_predictions > proba_threshold) 
        tn = cm[0][0] 
        fp = cm[0][1] 
         
        sensitivity = recall_score(y_true, y_predictions > 
proba_threshold) 
        specificity = tn / (tn + fp) 
 
        df.loc[proba_threshold, "threshold"] = proba_threshold 
        df.loc[proba_threshold,"sensitivity"] = sensitivity 
        df.loc[proba_threshold, "specificity"] = specificity 
        df.loc[proba_threshold, "likelihood_ratio_neg"] = (1-



2-implementation-guidance.md 8/27/2021

191 / 198

sensitivity)/specificity 
        df.loc[proba_threshold, "likelihood_ratio_pos"] = sensitivity/(1-
specificity) 
        df.loc[proba_threshold, "tp"] = cm[1][1] 
        df.loc[proba_threshold, "fp"] = fp 
        df.loc[proba_threshold, "tn"] = tn 
        df.loc[proba_threshold, "fn"] = cm[1][0] 
        df.loc[proba_threshold, "total_survived"] = np.sum(cm[0]) 
        df.loc[proba_threshold, "total_deceased"] = np.sum(cm[1]) 
    return df 

cm = onc_calc_cm( 
    results.y,  
    results.score,  
    range_probas=[.10,.20, .30, .40, .50]) 
cm.to_csv('./results/2021_mlp_confusion_matrix.csv') 
cm 

6.3.4.9 Fairness assessment

ML models can perform differently for different categories of patients, so the MLP model was assessed for

fairness, or how well the model performs for each category of interest (demographics—sex, race, and age—

as well as initial dialysis modality). Age is binned into the following categories based on UCSF clinician input

and an example in literature: 18-25, 26-35, 36-45, 46-55, 56-65, 66-75, 76-85, 86+. The USRDS

predefined categories for race, sex, and dialysis modality were used for the fairness assessment.

Steps to running the 6_mlp_fairness_assessment.ipynb script

This script calculates the ROC AUC for specific groups of patients to assess the fairness of the final model.

Input:

medexpreesrd 
2021_final_MLP_model_test_pred_proba_pooled.pickle 

Output:



2-implementation-guidance.md 8/27/2021

192 / 198

complete_fair1.pickle 
2021_mlp_fairness.csv 

Step 1. Import libraries

import numpy as np 
import pandas as pd 
import pickle 
import sys 
#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
import psycopg2 
import sqlalchemy 
from sqlalchemy import create_engine 
 
from fairness import get_fairness_assessment 

Step 2. Get the columns of data required to compute fairness assessment and save them

con = create_engine('postgresql://username:password@location/dbname') 
df = pd.read_sql_query('''SELECT usrds_id, died_in_90, inc_age, sex, 
dialtyp, race, hispanic, subset FROM medxpreesrd;''', con) 

Step 3. Save

with open('complete_fair1.pickle', 'wb') as picklefile:   
    pickle.dump(df, picklefile) 

Step 4. Import the pooled results from the LR model

with open('./results/2021_final_MLP_model_test_pred_proba_pooled.pickle', 
'rb') as f: 
        proba = pickle.load(f) 

Step 5. Merge the fairness details with the results

data = df.merge(proba, on=['usrds_id','subset','died_in_90']) 

Step 6. Calculate fairness. The function get_fairness_assessment is imported from the

/onc_functions/fairness.py file. This function calculates AUC and the confusion matrix from the model



2-implementation-guidance.md 8/27/2021

193 / 198

prediction scores for specific groups.

Step 7. Calculate the assessment and save the results.

fairness = get_fairness_assessment(data, 
                                  y_proba_col_name='score', 

def get_fairness_assessment(data, 
                            y_proba_col_name, 
                            y_true_col_name): 
     
    #turn the continuous age variable into age categories 
    df['agegroup'] = pd.cut(df.inc_age,  
                           bins=[17, 25, 35, 45, 55, 65, 75, 85, 90],  
                           labels=[1, 2, 3, 4, 5, 6, 7, 8]) 
     
    df = df.drop(columns=['inc_age']) 
     
    #replace NaNs with a large number that does not appear in the data, 
effectively creating another category for missing values 
    df.loc[:,['race','dialtyp','hispanic']] = df.loc[:,
['race','dialtyp','hispanic']].fillna(100.0, axis=1).copy() 
     
    #Identify the cols for the fairness assessment 
    fairness_cols = ['agegroup', 'sex','dialtyp', 'race','hispanic'] 
     
    #loop through all categories and values to get counts, auc, and 
confusion matrix 
    rows_list = [] 
    for col in fairness_cols: 
        for name, c in df.groupby(col): 
            fairness_dict = {} 
            fairness_dict['Feature'] = col 
            fairness_dict['Value'] = name 
            fairness_dict['Count'] = c.shape[0] 
 
            fairness_dict['AUC'] = roc_auc_score(c[y_true_col_name], 
c[y_proba_col_name]) 
            tn, fp, fn, tp = confusion_matrix(y_true = c[y_true_col_name],  
                                              y_pred = 
np.where(c[y_proba_col_name] >= 0.5, 1, 0)).ravel() 
            fairness_dict['TN'] = tn 
            fairness_dict['FP'] = fp 
            fairness_dict['FN'] = fn 
            fairness_dict['TP'] = tp 
            rows_list.append(fairness_dict) 
     
    #convert results from a list to a dataframe 
    df_fairness = pd.DataFrame(rows_list) 
    return df_fairness 



2-implementation-guidance.md 8/27/2021

194 / 198

                                  y_true_col_name='died_in_90' 
) 
fairness.to_csv('./results/2021_mlp_fairness.csv') 



2-implementation-guidance.md 8/27/2021

195 / 198

Points to consider



2-implementation-guidance.md 8/27/2021

196 / 198

Performing the fairness assessment on the categories of interest gives additional insight into how the model

performs by different patient categories of interest (by demographics, etc.). Future researchers should

perform fairness assessments to better evaluate model performance, especially for models that may be

deployed in a clinical setting. Other methods of assessing fairness include evaluating true positives,

sensitivity, positive predictive value, etc. at various threshold across the different groups of interest, which

would allow selection of a threshold that balances model performance across the groups of interest.

6.3.4.10 Risk assessment

Steps for running the 7_mlp_risk.ipynb script

Input:

complete_fair1.pickle 
2021_final_MLP_model_test_pred_proba_pooled.pickle 

Output:

2021_mlp_risk_cat.csv 

Step 1. Import libraries

import numpy as np 
import pandas as pd 
import pickle 
 
import sys 
#path to the functions directory 
sys.path.append('/ML-AI-PCOR-2021/onc_functions/') 
 
from risk import get_risk_categories 
 
print('python-' + sys.version) 
import datetime 
dte = datetime.datetime.now() 
dte = dte.strftime("%Y%m%d") 

Step 2. Import the details from the fairness assessment

with open('complete_fair1.pickle','rb') as f:   
    details = pickle.load(f) 

Step 3. Import the pooled results from the model



2-implementation-guidance.md 8/27/2021

197 / 198

with open('./results/2021_final_MLP_model_test_pred_proba_pooled.pickle', 
'rb') as f: 
        y_pred = pickle.load(f) 

Step 4. Merge the details with the results

data = df.merge(y_pred, on=['usrds_id','died_in_90','subset']) 

Step 5. Calculate risk. The function get_risk_categories is imported from the /onc_functions/risk.py file.

def get_risk_categories(dataset, y_proba_col_name, y_true_col_name): 
     
    test_x_pd = dataset[dataset.subset > 6].copy().sort_values(by = 
'usrds_id') 
    del dataset 
     
    df = test_x_pd.loc[:,[y_true_col_name,y_proba_col_name]] 
     
    #construct the risk categories from the predicted score 
    df['risk_categories'] = pd.cut(df[y_proba_col_name],         
                                   bins=[-0.1, 0.09, 0.19, 0.29, 0.39, 
0.49, 0.59, 0.69, 0.79, 0.89, 0.99], 
                                   labels=['0-0.09', '0.1-0.19', '0.2-
0.29', '0.3-0.39', '0.4-0.49', 
                                           '0.5-0.59','0.6-0.69','0.7-
0.79','0.8-0.89','0.9-0.99']) 
     
    #loop through all the categories to get the predicted score 
    risk_list = [] 
    for name, c in df.groupby('risk_categories'): 
        risk_dict = {} 
        risk_dict['Risk Category'] = name 
        risk_dict['Count'] = c[y_true_col_name].shape[0] 
        risk_dict['Count Died in 90'] = c[y_true_col_name].sum() 
        risk_dict['Count Survived'] = c[y_true_col_name].shape[0]-
c[y_true_col_name].sum() 
        risk_dict['Percent Died in 90'] = 
c[y_true_col_name].sum()/c[y_true_col_name].shape[0] 
         
        risk_list.append(risk_dict) 
     
    df_risk = pd.DataFrame(risk_list) 
    return df_risk 

Run the function above



2-implementation-guidance.md 8/27/2021

198 / 198

risk_cat = get_risk_categories(data, 
                               y_proba_col_name='score', 
                               y_true_col_name='died_in_90') 

Step 6. Save

risk_cat.to_csv('./results/' + str(dte) + '_mlp_risk_cat.csv') 


