Training Data for Machine Learning to Enhance Patient-Centered Outcomes Research Data Infrastructure

Project Goal

Conduct foundational work to advance the future application of artificial intelligence (AI)/machine learning (ML) for patient-centered outcomes research (PCOR) by generating high-quality training datasets that can be used in ML models for a kidney disease use case.

Objectives

- Prepare high-quality training datasets from the United States Renal Data System (USRDS) data to address a kidney disease use case.
- Develop ML models based on three algorithms – eXtreme gradient boosting (XGBoost), logistic regression, and multilayer perceptron – to provisionally test the training datasets.
- Validate the approaches for building the ML models by evaluating their performance using conventional metrics such as area under the curve (AUC).
- Disseminate project outputs that future researchers can refer to when preparing training datasets and ML models for new kidney disease use cases.

Prepared for the Office of the National Coordinator for Health Information Technology under contract number HHSP233201500132I.
Data Source & Use Case Selection

Data Source: **United States Renal Data System (USRDS)**

Use Case: **Predicting mortality in the first 90 days of dialysis**

The first 90 days following initiation of chronic dialysis in end-stage kidney disease patients represent a high-risk period for adverse outcomes, including mortality.

While the sudden and unplanned start of dialysis is a known risk factor, other factors leading to poor outcomes during this early period have not been fully delineated.

Studies of the end-stage kidney population have conventionally excluded the first 90 days from analyses.

Tools to identify patients at highest-risk for poor outcomes during this early period are lacking.

High Quality Training Datasets Development

METHODOLOGY

PATIENTS

n=3,161,638

- Existing first dialysis date
 n=3,096,526

- Death date NOT before first dialysis date
 n=3,096,515

- Age at first dialysis greater than or equal to 18
 n=3,065,026

- First dialysis date between 2007-2018
 n=1,150,195

- Study cohort
 n=1,150,195

RESULTS

- High-quality training dataset criteria:
 - Features cleaned and correctly labeled (well-labeled)
 - Dataset reliable and well curated (well-structured)
 - Features use common data elements

- 7.5% of patients died in the first 90 days of dialysis in the study cohort

- Training dataset includes 188 features, including demographics, prior care, clinical variables, comorbidities, patient education

- Two versions of the dataset prepared: imputed (using multiple imputations by chained equations) and non-imputed

- Full dataset divided into a training and a test dataset using a 70%-30% split
Machine Learning Models Development

RESULTS

- Area under the receiver operating characteristic curve (ROC AUC) ranged from 0.811 to 0.827
- Top features ranked in XGBoost and logistic regression models include patient age, whether the patient had inpatient stay claims, had received exogenous erythropoietin (anti-anemic treatment), serum albumin value, and presence of arteriovenous fistula (for hemodialysis)

Area Under the Curve (AUC)

- XGBoost Non-imputed AUC = 0.826
- XGBoost Imputed AUC = 0.827
- Logistic Regression AUC = 0.811
- Multilayer Perceptron AUC = 0.812

Project Outputs - Dissemination

Click Below to Access

- Final Report
- Implementation Guide
- Code
- Webinar Slides