

Virtual Generalist:

Modeling Co-morbidities in SyntheaTM

Organization: The Generalistas
Composed of data scientists and physicians from Microsoft Corp, Mercy Health and UC San
Francisco.

Contact information:
Robert Horton, PhD, MS rhorton@Microsoft.com
Senior Data Scientist, Microsoft
Cell: (415) 847-5463

John-Mark Agosta, PhD John-Mark.Agosta@microsoft.com
Principal Data Scientist, Microsoft

Benjamin Dummitt, PhD Benjamin.Dummitt@Mercy.Net
Lead Data Scientist, Mercy

Brandon DeShon, MS Brandon.DeShon@Mercy.Net
Senior Data Scientist, Mercy

Katherine Gundling, MD FACP Katherine.gundling@ucsf.edu
Professor Emeritus, University of California, San Francisco

Jason Dausman, MD FACP FHM Jason.Dausman@Mercy.Net
Medical Director of Clinical Informatics, Mercy Hospital St. Louis

Challenge category: Enhancements to Synthea
Use Case: Complex Care
Video: https://youtu.be/HqB_thGSm1c
Github repository: https://github.com/rmhorton/virtual-generalist

Abstract
The SyntheaTM Patient Generator presents important new opportunities to create simulated data for
health care and research. To achieve this purpose, however, Synthea must optimally reflect real medical
encounters and disease states, which are often complex and nuanced. Most of the current Synthea
modules function as “virtual specialists” that each focus on a relatively narrow scope of practice. To
optimize Synthea’s functionality and application to the real world, a Virtual Generalist is required to
generate a very wide range of complex combinations of conditions in statistically appropriate
distributions. We developed hand-curated maps to compare observations made on real patients (coded
in ICD10) to Synthea simulations (which use SNOMED concepts). Using these concept maps on a large
clinical dataset, we were able to use machine learning (ML) on a scalable Spark platform to extract
conditional probability tables (CPTs) that we incorporated into a Synthea simulation module. Our Virtual
Generalist CKD module is notable in that it operates entirely by modifying attributes used by other
modules, acting as a statistical supervisor to adjust population distributions. We validate the improved
realism of the results using statistical measurements to compare distributions between simulated and
real populations, and describe this validation approach in a detailed Appendix. Taking advantage of our
current modeling of a comprehensive EMR dataset, we applied our existing methods to improvements
in the Synthea simulation tools. Notebooks on our GitHub repository provide working examples other
investigators can use to train and evaluate models on their own clinical data, to learn CPTs for other
conditions. Importantly, we demonstrate our complex feature engineering and modeling approaches
using Synthea data, which enables us to share working examples. Our tools, example module, and
technical approaches help to democratize the use of ML models that can extract conditional probability
tables, which are particularly suitable for use in Synthea's new lookup_table_transition state.
Broad use of appropriate CPTs promises to add significant statistical sophistication to this simulation
system. We provide a set of recommended design patterns for module authors that aim to increase
Synthea modules’ amenability to the sort of statistical intervention that is possible with a Virtual
Generalist. Together these tools and approaches empower developers to build simulation models with
increased sophistication for complex disease conditions.

Introduction

Healthcare lags behind other industries in the level of sophistication of information technology, largely
due to privacy restrictions on sharing data. Specifically, there is a paucity of shareable healthcare
datasets suitable for machine learning (ML) applications.

Simulated data can only help fill this gap if it contains appropriate statistical relationships between
attributes. Using ML to simulate data to train ML models seems oddly circular; if you understood the
statistical relationships between attributes well enough to simulate data that could be used to train
accurate ML models, you would need to have solved the ML problem already. However, simulated data
does not need to capture the statistical relationships perfectly to be useful in practice. Even modestly
realistic datasets can be quite useful for learning and experimenting with ML approaches, and to 'dry
lab' various approaches that can subsequently be applied to real data.

Synthea𝑇𝑀 is an agent-based simulation platform supporting a growing collection of modules, many
authored by contributing domain experts. These modules model incidence, progression, and treatment
of clinical conditions. Most modules make use of publicly available health statistics, clinical guidelines,

and patient care protocols in a human-understandable flowchart format, so the simulation logic is fully
transparent. Each patient’s lifetime is simulated to produce a population of patients. The resulting 'fully
synthetic' medical records have proven useful for a variety of nonclinical settings, including education
and many aspects of healthcare IT innovation [Walonoski_2020]. A particularly useful characteristic of
the Synthea approach is that it produces longitudinal data, where trends may be observed for individual
patients over time. This kind of data could potentially be used to develop and demonstrate time-
dependent ML models, including time-series and probabilistic graphical models, if the simulated data
were to incorporate appropriate statistical relationships among attributes.

A great deal of data scientists' time is spent on various kinds of data manipulation, including (but not
limited to) feature engineering. Feature engineering is the process of collecting information from various
data sources to include in a dataset. For typical ML approaches, most datasets consist of single
'rectangular' tables containing one row per example, where one or more columns of the table contain
labels (usually the outcome or category to be predicted), and other columns contain features which
characterize the cases, and are used as inputs to predict the labels. The data scientist must decide how
to represent these characteristics, and which characteristics to include; these decisions are
implemented through feature engineering. The preferred way to share data manipulation approaches
with other data scientists is with code accompanied by working examples. This requires sample data,
and modestly realistic simulated data often fits the bill nicely.

The new ‘lookup_table_transition’ state in Synthea promises significantly improved power and simplicity
for creating Synthea modules. These tables make it possible to replace complicated networks of
dependencies between states in Synthea modules with simple, clean table lookups. Moving the
complexity from the state diagrams to tables will greatly facilitate the development of much more
sophisticated conditional logic in Synthea modules. This is a new feature, and the support is not
complete; for example, the JSON code must be modified slightly for display in the Module Builder,
compared to the format required to run in Synthea.

But how do you decide which conditions to include in a conditional probability table, and where do you
get the probabilities? Here we demonstrate a data-driven approach using machine learning of Bayesian
belief networks [Pearl 1988] to model conditional probabilities and generate the kinds of tables we
need, then deploy these tables in our Virtual Generalist module in Synthea. This module is unique in that
its only effects are to alter the attributes used by another module. This results in a more realistic
distribution of conditions in the simulated population without modifying the code of the other module.

Methods

Details of feature engineering and modeling approaches can be found in the notebooks on our github
repository at https://github.com/rmhorton/virtual-generalist.

Figure 1: Mapping ICD10 codes to SNOMED concepts.

Concept mapping: Figure 1 shows examples of our hand-curated mapping rules. The first row (set_id 43)
shows a truncated ICD10 pattern; any code starting with 'E11', including all of the more detailed codes
with additional digits, will map to the 'Diabetes' concept. We chose not to create a separate concept for
Type 2 Diabetes because 'Diabetes' is the concept currently used in Synthea, and it is apparently just
Type 2. The next two lines show that ICD10 codes N18.5 and N18.6 both map to 'End stage renal
disease'; the Synthea Metabolic Syndrome disease module treats stage 5 as end stage, and we do the
same. The last two rows show a two-part rule; a patient must have both acute sinusitis and bacterial
agents before we decide they have acute bacterial sinusitis.

Encounter-level data: A
panel of categorical
features (is computed for
each patient encounter
(BMI category, age group,
Hemoglobin A1c range,
patient age at the time of
the encounter, etc) and the
SNOMED concepts
associated with that
encounter are used as
features as well. This figure
shows features engineered

from Synthea data (see the notebook "Synthea_population_statistics" on our github repository for
details), so we are free to show you the encounter IDs. Of course we use this same approach on real
data to learn realistic conditional probabilities.

Co-occurrence graphs: For every pair of features in the table shown in Figure 2 (age group, SNOMED
concept, etc.) we compute a variety of statistics quantifying how often those two features appear in the
same encounter. For example, the metric 'confidence' is the fraction of encounters having the first
feature that also have the second feature, and the metric 'lift' is the confidence normalized by overall
prevalence of the second feature. These pairwise relationship metrics become edge weights in a graph
where the features are nodes. These graphs are visualized using the 'vis.js' javascript library.

Encounter-level Bayes Network: The encounter feature table is pivoted to a wide format, so that there
is one row per encounter and one column per feature, and used as input to the `bnlearn` package in R
[Nagarajan 2013] to learn network structure, then compute conditional probabilities.

Figure 3: Monthly patient data in wide format, for training dynamic Bayes net on CKD stages. Patient IDs are redacted, but all
rows shown here apply to the same patient. Note the transition from stage ‘ckd_3’ to ‘ckd_4’ on the third row.

Monthly timeseries data for CKD stages: Each row in this dataset shows the features for one patient for
one month, and each month of the patient's history gets a row. This dataset uses a much smaller set of
features than then encounter level data, and includes a column for 'ckd_stage', as well as a column

Figure 2:Encounter features in long format.

showing what stage that patient will be in the next month ('next_ckd_stage' is just 'ckd_stage' slid
forward one row.) Missing values are filled forward from the last known value; if there is no known
value for ckd stage it is assumed to be zero.

Dynamic Bayes network for CKD
stage progression: When the
monthly timeseries data is used to
build a Bayes network, it learns the
dependencies between
'next_ckd_stage' and the other
features. Building the Bayes
network determines feature
importance for the transition
model. Here the effects of all
variables on CKD stage transition
are mediated solely through
Diabetes, which itself is influenced
by Age, Smoker, Copd Variant, and
CKD stage. Both Ethnicity and
Coronary heart disease are
irrelevant to Next_ckd_stage, given
the rest. The features in this dataset
are all closely tied to Synthea
attributes, which enables the
lookup_table_transition module to

use attribute values as inputs when the simulation runs.

Results

We have developed a process for learning conditional
probability lookup tables from data at scale. We demonstrate
the use of these learned tables in `lookup_table_transition`
states for chronic kidney disease (CKD) in Synthea, and show
that this leads to more realistic statistical distribution of disease
stages in the resulting simulated population.

Figure 5 shows the section of the Metabolic Syndrome disease
progression module that determines whether a simulated
patient will be given diabetes. This decision is made just after
the patient turns 18, and it leads to a delay of up to 37 years
before the disease manifests. This means patients are destined
to get diabetes that leads to CKD, and nothing that happens in
the simulation after this point can alter that decision.

Figure 5: Diabetes and CKD are predestined
after patient reaches the age of 18.

Figure 4: Structure of the dynamic Bayes net model of stage transitions in CKD.
Each node in this graph has an accompanying conditional probability table (CPT).
The CPT from the 'next_ckd_stage' node was incorporated into our Synthea
module.

However, once a patient enters the disease progression loop, the stage of their chronic kidney disease is
maintained in the `ckd` attribute, which is a number between 0 (no disease) and 5 (end stage disease).
The loop runs once per month, and in every cycle
there are fixed probabilities for progressing from the
given stage to the next.

This disease progression loop has sections for other
components of metabolic syndrome, including
peripheral neuropathy and retinopathy; we chose to
prioritize CKD because we can map the disease states
to ICD10 codes, which let us model disease
progression on real data.

Other modules do not permit intervention of this sort;
we examine the Congestive Heart Failure module as a
prime example. Left Ventricular Ejection Fraction is a
marker of disease progression in this condition, but it
is not used that way in Synthea. Figure 5 compares measurements over time for several individual
patients, with real patients from the Mercy database
on the top panel, and simulated patients from
Synthea on the bottom.

Figure 7: Model co-occurrence probability measure mean
values between simulated and real patient populations, before
and after incorporating the Virtual Generalist CKD module.

As shown In Figure 7, COPM values computed on
simulated populations (100 thousand patients
each) before and after incorporating the Virtual
Generalist CKD module. The upper table considers
a broad panel of 107 variables, while the lower
table considers just a subset of 6 of those variables
affected by the improvement. In both cases COPM
decreases after our intervention, indicating the

simulation more closely approximates the clinical EMR data from which the module improvements are
derived. As expected, the measured improvement is more pronounced when considering just the
variables most directly affected by the module, but the improvement is noticeable even in a very
general evaluation.

Our code runs on the Azure Databricks Spark platform, and is scalable to extremely large datasets. It is
provided in the form of Databricks notebooks that use SQL, Python, and R code cells to perform the
required data manipulation, train the Bayes network models, and extract the desired lookup tables. We
also generate interactive graph visualizations illustrating the co-occurrence relationships between
features in the data.

Figure 6: Time distribution of Left Ventricular Ejection
Fraction in real vs. simulated patients.

Discussion

Recent progress in machine learning is supported to a large degree by freely shareable datasets, which
are used to demonstrate, communicate, and evaluate new ML approaches. There is a paucity of such
material for medical applications, largely due to privacy and confidentiality concerns, and simulation
promises to help fill this gap in useful ways.

It may seem circular to try to learn lookup tables to use in a simulation from data that was generated by
a simulation. The point is to make it easier to show others how to learn these lookup tables, so that they
can go on to adapt the process to their own real data, and learn new lookup tables. The process of
manipulating and formatting the data to prepare it for machine learning is nontrivial, and it is difficult to
overstate the practical importance of being able to share working examples of code together with the
data it operates on. Providing shareable data is one of the most important uses of health data
simulation as far as software development is concerned, and this includes development of AI
applications.

We show the power of our approach by developing a Synthea module using `lookup table transition`
states. The ‘virtual_generalist_ckd’ module modifies the transition probabilities of going from one stage
of chronic kidney disease (CKD) to another. The state transitions were learned using a dynamic Bayes
net trained on a dataset where each row is a time slice (one month in this case, to match the granularity
used in the original disease progression module). One feature of these time slices is the current CKD
stage, and another is the stage of the patient’s disease in the subsequent month. Additional features
include age, gender, and co-morbidities (hypertension, etc.).

We also use these conditional probabilities to provide a statistical overview of the relationships between
observable conditions. We can use this perspective to make population-level comparisons, both
between real and simulated data and between simulated datasets before and after our module is
included, as described in detail in Appendix A.

Our code, together with working examples of the complex, scalable feature engineering and modeling
process that we used to develop these models and extract the conditional probability tables, are
available from our GitHub repository. Working examples require sample data, which we conveniently
obtained from Synthea. We regard this application of synthetic data, which enables shareable working
examples of data science approaches, as an extremely important use case for Synthea.

Recommended design patterns for module authors
No Delay: try to avoid using long delay transitions after a decision is made to give a patient a disease.
Mechanism of Progress: Employ attributes that serve as mechanistic determinants of progression within
a continuous loop. This makes it possible for other modules to affect disease progression my altering the
values of these attributes.
Separate treatment: keep the modeling of disease incidence and progression separate from patient
care, in a different module if possible (see the Metabolic Syndrome disease progression and standards
of care modules for an example).

Donation of Prize Money
To avoid any potential conflicts of interest with our day jobs, we request that in the event this team wins
any prize money in this contest it be donated to:

Sustainable Harvest International
177 Huntington Ave Ste 1703 #23701
Boston, MA 02115 USA

References

Brady E, Nielsen MW, Andersen JP, Oertelt-Prigione S. Lack of consideration of sex and gender in COVID-19

clinical studies. Nat Commun. 2021 Jul 6;12(1):4015. doi: 10.1038/s41467-021-24265-8. PMID:
34230477.

Choi E, Biswal S, Malin B, Duke J, Stewart WF, and Sun J. 2017. Generating multi-label discrete patient records

using generative adversarial networks. In Machine learning for healthcare conference. PMLR, 286–305.

Lu PH, Wang PC, and Yu CM. 2019. Empirical evaluation on synthetic data generation with generative

adversarial network. In Proceedings of the 9th International Conference on Web Intelligence, Mining
and Semantics. 1–6

Marini, S, Trifoglio E, Barbarini N, Sambo F, Di Camillo B, Malovini A, Manfrini M, Cobelli C, Bellazzi R., “A

Dynamic Bayesian Network model for long-term simulation of clinical complications in type 1
diabetes,” Journal of Biomedical Informatics, Volume 57, (2015), pp 369-376.

Nagarajan R, Scutari M and Lèbre S. Bayesian Networks in R with Applications in Systems Biology. Use R!, Vol.

48, Springer (US), 2013.

Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann,

1988.

Pearl J and MacKenzie D. The Book of Why - the New Science of Cause and Effect. Basic Books, New Yory NY,

2018, p 197.

Templ M, Meindl B, Kowarik A, and Dupriez O. 2017. Simulation of synthetic complex data: The R package

simPop. Journal of Statistical Software 79, 10 (2017), 1–38

Walonoski J , Klaus S, Granger E, Hall D, Gregorowicz A, Neyarapally G, Watson A, and Eastman J. 2020.

Synthea™ Novel coronavirus (COVID-19) model and synthetic data set. Intelligence-based medicine 1
(2020), 100007.

Walonoski J, Kramer M, Nichols J, Quina A, Moesel C, Hall D, Duffett C, Dube K, Gallagher T, and McLachlan S.

2018. Synthea: An approach, method, and software mechanism for generating synthetic patients and
the synthetic electronic health care record.

