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Abstract 
The SyntheaTM Patient Generator presents important new opportunities to create simulated data for 
health care and research. To achieve this purpose, however, Synthea must optimally reflect real medical 
encounters and disease states, which are often complex and nuanced. Most of the current Synthea 
modules function as “virtual specialists” that each focus on a relatively narrow scope of practice. To 
optimize Synthea’s functionality and application to the real world, a Virtual Generalist is required to 
generate a very wide range of complex combinations of conditions in statistically appropriate 
distributions. We developed hand-curated maps to compare observations made on real patients (coded 
in ICD10) to Synthea simulations (which use SNOMED concepts). Using these concept maps on a large 
clinical dataset, we were able to use machine learning (ML) on a scalable Spark platform to extract 
conditional probability tables (CPTs) that we incorporated into a Synthea simulation module. Our Virtual 
Generalist CKD module is notable in that it operates entirely by modifying attributes used by other 
modules, acting as a statistical supervisor to adjust population distributions. We validate the improved 
realism of the results using statistical measurements to compare distributions between simulated and 
real populations, and describe this validation approach in a detailed Appendix. Taking advantage of our 
current modeling of a comprehensive EMR dataset, we applied our existing methods to improvements 
in the Synthea simulation tools. Notebooks on our GitHub repository provide working examples other 
investigators can use to train and evaluate models on their own clinical data, to learn CPTs for other 
conditions. Importantly, we demonstrate our complex feature engineering and modeling approaches 
using Synthea data, which enables us to share working examples. Our tools, example module, and 
technical approaches help to democratize the use of ML models that can extract conditional probability 
tables, which are particularly suitable for use in Synthea's new lookup_table_transition state. 
Broad use of appropriate CPTs promises to add significant statistical sophistication to this simulation 
system. We provide a set of recommended design patterns for module authors that aim to increase 
Synthea modules’ amenability to the sort of statistical intervention that is possible with a Virtual 
Generalist.  Together these tools and approaches empower developers to build simulation models with 
increased sophistication for complex disease conditions. 
 
 

Introduction 
 
Healthcare lags behind other industries in the level of sophistication of information technology, largely 
due to privacy restrictions on sharing data. Specifically, there is a paucity of shareable healthcare 
datasets suitable for machine learning (ML) applications. 
 
Simulated data can only help fill this gap if it contains appropriate statistical relationships between 
attributes. Using ML to simulate data to train ML models seems oddly circular; if you understood the 
statistical relationships between attributes well enough to simulate data that could be used to train 
accurate ML models, you would need to have solved the ML problem already. However, simulated data 
does not need to capture the statistical relationships perfectly to be useful in practice. Even modestly 
realistic datasets can be quite useful for learning and experimenting with ML approaches, and to 'dry 
lab' various approaches that can subsequently be applied to real data. 
 
Synthea𝑇𝑀 is an agent-based simulation platform supporting a growing collection of modules, many 
authored by contributing domain experts. These modules model incidence, progression, and treatment 
of clinical conditions. Most modules make use of publicly available health statistics, clinical guidelines, 



and patient care protocols in a human-understandable flowchart format, so the simulation logic is fully 
transparent. Each patient’s lifetime is simulated to produce a population of patients. The resulting 'fully 
synthetic' medical records have proven useful for a variety of nonclinical settings, including education 
and many aspects of healthcare IT innovation [Walonoski_2020]. A particularly useful characteristic of 
the Synthea approach is that it produces longitudinal data, where trends may be observed for individual 
patients over time. This kind of data could potentially be used to develop and demonstrate time-
dependent ML models, including time-series and probabilistic graphical models, if the simulated data 
were to incorporate appropriate statistical relationships among attributes. 
 
A great deal of data scientists' time is spent on various kinds of data manipulation, including (but not 
limited to) feature engineering. Feature engineering is the process of collecting information from various 
data sources to include in a dataset. For typical ML approaches, most datasets consist of single 
'rectangular' tables containing one row per example, where one or more columns of the table contain 
labels (usually the outcome or category to be predicted), and other columns contain features which 
characterize the cases, and are used as inputs to predict the labels. The data scientist must decide how 
to represent these characteristics, and which characteristics to include; these decisions are 
implemented through feature engineering. The preferred way to share data manipulation approaches 
with other data scientists is with code accompanied by working examples. This requires sample data, 
and modestly realistic simulated data often fits the bill nicely. 
 
The new ‘lookup_table_transition’ state in Synthea promises significantly improved power and simplicity 
for creating Synthea modules. These tables make it possible to replace complicated networks of 
dependencies between states in Synthea modules with simple, clean table lookups. Moving the 
complexity from the state diagrams to tables will greatly facilitate the development of much more 
sophisticated conditional logic in Synthea modules. This is a new feature, and the support is not 
complete; for example, the JSON code must be modified slightly for display in the Module Builder, 
compared to the format required to run in Synthea. 
 
But how do you decide which conditions to include in a conditional probability table, and where do you 
get the probabilities? Here we demonstrate a data-driven approach using machine learning of Bayesian 
belief networks [Pearl 1988] to model conditional probabilities and generate the kinds of tables we 
need, then deploy these tables in our Virtual Generalist module in Synthea. This module is unique in that 
its only effects are to alter the attributes used by another module. This results in a more realistic 
distribution of conditions in the simulated population without modifying the code of the other module. 
 

Methods 
 
Details of feature engineering and modeling approaches can be found in the notebooks on our github 
repository at https://github.com/rmhorton/virtual-generalist. 
 

 
Figure 1: Mapping ICD10 codes to SNOMED concepts. 



Concept mapping: Figure 1 shows examples of our hand-curated mapping rules. The first row (set_id 43) 
shows a truncated ICD10 pattern; any code starting with 'E11', including all of the more detailed codes 
with additional digits, will map to the 'Diabetes' concept. We chose not to create a separate concept for 
Type 2 Diabetes because 'Diabetes' is the concept currently used in Synthea, and it is apparently just 
Type 2. The next two lines show that ICD10 codes N18.5 and N18.6 both map to 'End stage renal 
disease'; the Synthea Metabolic Syndrome disease module treats stage 5 as end stage, and we do the 
same. The last two rows show a two-part rule; a patient must have both acute sinusitis and bacterial 
agents before we decide they have acute bacterial sinusitis. 
 

Encounter-level data: A 
panel of categorical 
features (is computed for 
each patient encounter 
(BMI category, age group, 
Hemoglobin A1c range, 
patient age at the time of 
the encounter, etc) and the 
SNOMED concepts 
associated with that 
encounter are used as 
features as well. This figure 
shows features engineered 

from Synthea data (see the notebook "Synthea_population_statistics" on our github repository for 
details), so we are free to show you the encounter IDs. Of course we use this same approach on real 
data to learn realistic conditional probabilities. 
 
Co-occurrence graphs: For every pair of features in the table shown in Figure 2 (age group, SNOMED 
concept, etc.) we compute a variety of statistics quantifying how often those two features appear in the 
same encounter. For example, the metric 'confidence' is the fraction of encounters having the first 
feature that also have the second feature, and the metric 'lift' is the confidence normalized by overall 
prevalence of the second feature. These pairwise relationship metrics become edge weights in a graph 
where the features are nodes. These graphs are visualized using the 'vis.js' javascript library. 
 
Encounter-level Bayes Network: The encounter feature table is pivoted to a wide format, so that there 
is one row per encounter and one column per feature, and used as input to the `bnlearn` package in R 
[Nagarajan 2013] to learn network structure, then compute conditional probabilities. 
 

 
Figure 3: Monthly patient data in wide format, for training dynamic Bayes net on CKD stages. Patient IDs are redacted, but all 
rows shown here apply to the same patient. Note the transition from stage ‘ckd_3’ to ‘ckd_4’ on the third row. 

Monthly timeseries data for CKD stages: Each row in this dataset shows the features for one patient for 
one month, and each month of the patient's history gets a row. This dataset uses a much smaller set of 
features than then encounter level data, and includes a column for 'ckd_stage', as well as a column 

Figure 2:Encounter features in long format. 



showing what stage that patient will be in the next month ('next_ckd_stage' is just 'ckd_stage' slid 
forward one row.) Missing values are filled forward from the last known value; if there is no known 
value for ckd stage it is assumed to be zero. 
 

Dynamic Bayes network for CKD 
stage progression: When the 
monthly timeseries data is used to 
build a Bayes network, it learns the 
dependencies between 
'next_ckd_stage' and the other 
features. Building the Bayes 
network determines feature 
importance for the transition 
model. Here the effects of all 
variables on CKD stage transition 
are mediated solely through 
Diabetes, which itself is influenced 
by Age, Smoker, Copd Variant, and 
CKD stage. Both Ethnicity and 
Coronary heart disease are 
irrelevant to Next_ckd_stage, given 
the rest. The features in this dataset 
are all closely tied to Synthea 
attributes, which enables the 
lookup_table_transition module to 

use attribute values as inputs when the simulation runs. 
 

Results 
 
We have developed a process for learning conditional 
probability lookup tables from data at scale. We demonstrate 
the use of these learned tables in `lookup_table_transition` 
states for chronic kidney disease (CKD) in Synthea, and show 
that this leads to more realistic statistical distribution of disease 
stages in the resulting simulated population. 
 
Figure 5 shows the section of the Metabolic Syndrome disease 
progression module that determines whether a simulated 
patient will be given diabetes. This decision is made just after 
the patient turns 18, and it leads to a delay of up to 37 years 
before the disease manifests. This means patients are destined 
to get diabetes that leads to CKD, and nothing that happens in 
the simulation after this point can alter that decision. 
 

Figure 5: Diabetes and CKD are predestined 
after patient reaches the age of 18. 

Figure 4: Structure of the dynamic Bayes net model of stage transitions in CKD. 
Each node in this graph has an accompanying conditional probability table (CPT). 
The CPT from the 'next_ckd_stage' node was incorporated into our Synthea 
module. 



However, once a patient enters the disease progression loop, the stage of their chronic kidney disease is 
maintained in the `ckd` attribute, which is a number between 0 (no disease) and 5 (end stage disease). 
The loop runs once per month, and in every cycle 
there are fixed probabilities for progressing from the 
given stage to the next. 
 
This disease progression loop has sections for other 
components of metabolic syndrome, including 
peripheral neuropathy and retinopathy; we chose to 
prioritize CKD because we can map the disease states 
to ICD10 codes, which let us model disease 
progression on real data.  
 
Other modules do not permit intervention of this sort; 
we examine the Congestive Heart Failure module as a 
prime example. Left Ventricular Ejection Fraction is a 
marker of disease progression in this condition, but it 
is not used that way in Synthea. Figure 5 compares measurements over time for several individual 
patients, with real patients from the Mercy database 
on the top panel, and simulated patients from 
Synthea on the bottom. 
 

Figure 7: Model co-occurrence probability measure mean 
values between simulated and real patient populations, before 
and after incorporating the Virtual Generalist CKD module. 

 
As shown In Figure 7, COPM values computed on 
simulated populations (100 thousand patients 
each) before and after incorporating the Virtual 
Generalist CKD module. The upper table considers 
a broad panel of 107 variables, while the lower 
table considers just a subset of 6 of those variables 
affected by the improvement. In both cases COPM 
decreases after our intervention, indicating the 

simulation more closely approximates the clinical EMR data from which the module improvements are 
derived. As expected, the measured improvement is more pronounced when considering just the 
variables most directly affected by the module, but the improvement is noticeable even in a very 
general evaluation. 
 
Our code runs on the Azure Databricks Spark platform, and is scalable to extremely large datasets. It is 
provided in the form of Databricks notebooks that use SQL, Python, and R code cells to perform the 
required data manipulation, train the Bayes network models, and extract the desired lookup tables. We 
also generate interactive graph visualizations illustrating the co-occurrence relationships between 
features in the data. 
 

Figure 6: Time distribution of Left Ventricular Ejection 
Fraction in real vs. simulated patients. 



Discussion 
 
Recent progress in machine learning is supported to a large degree by freely shareable datasets, which 
are used to demonstrate, communicate, and evaluate new ML approaches. There is a paucity of such 
material for medical applications, largely due to privacy and confidentiality concerns, and simulation 
promises to help fill this gap in useful ways. 
 
It may seem circular to try to learn lookup tables to use in a simulation from data that was generated by 
a simulation. The point is to make it easier to show others how to learn these lookup tables, so that they 
can go on to adapt the process to their own real data, and learn new lookup tables. The process of 
manipulating and formatting the data to prepare it for machine learning is nontrivial, and it is difficult to 
overstate the practical importance of being able to share working examples of code together with the 
data it operates on. Providing shareable data is one of the most important uses of health data 
simulation as far as software development is concerned, and this includes development of AI 
applications. 
 
We show the power of our approach by developing a Synthea module using `lookup table transition` 
states. The ‘virtual_generalist_ckd’ module modifies the transition probabilities of going from one stage 
of chronic kidney disease (CKD) to another. The state transitions were learned using a dynamic Bayes 
net trained on a dataset where each row is a time slice (one month in this case, to match the granularity 
used in the original disease progression module). One feature of these time slices is the current CKD 
stage, and another is the stage of the patient’s disease in the subsequent month. Additional features 
include age, gender, and co-morbidities (hypertension, etc.). 
 
We also use these conditional probabilities to provide a statistical overview of the relationships between 
observable conditions. We can use this perspective to make population-level comparisons, both 
between real and simulated data and between simulated datasets before and after our module is 
included, as described in detail in Appendix A. 
 
Our code, together with working examples of the complex, scalable feature engineering and modeling 
process that we used to develop these models and extract the conditional probability tables, are 
available from our GitHub repository. Working examples require sample data, which we conveniently 
obtained from Synthea. We regard this application of synthetic data, which enables shareable working 
examples of data science approaches, as an extremely important use case for Synthea. 
 

Recommended design patterns for module authors 
No Delay: try to avoid using long delay transitions after a decision is made to give a patient a disease. 
Mechanism of Progress: Employ attributes that serve as mechanistic determinants of progression within 
a continuous loop. This makes it possible for other modules to affect disease progression my altering the 
values of these attributes. 
Separate treatment: keep the modeling of disease incidence and progression separate from patient 
care, in a different module if possible (see the Metabolic Syndrome disease progression and standards 
of care modules for an example). 



Donation of Prize Money 
To avoid any potential conflicts of interest with our day jobs, we request that in the event this team wins 
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Boston, MA 02115 USA 
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