

API Current State Assessment

Prashila Dullabh

NORC at the University of Chicago

Dullabh-Prashila@norc.org

January 27, 2020

API Landscape Assessment

Objectives

- Present findings from a current-state assessment of API use in health care
- Discuss implications for app development

Areas of Focus

- Clinical use cases and standards for APIs
- Challenges and technical concerns for read and write capabilities
- Outlook for future development of write capabilities

API Landscape Assessment Methods

We used the following methods to conduct the current-state assessment:

Literature Review

Peer reviewed and grey literature

Key Informant Interviews

13 stakeholders, representing 3 different stakeholder types

EHR App Gallery Review

Publicly available and vendorcurated galleries

Technical Expert Panel

13 subject matter experts representing different stakeholder perspectives N C RC at the UNIVERSITY of CHICAGO

API Landscape Assessment Limitations

- The categorization of app end-users and app purpose was derived from publicly available information that was not consistently available across apps or app galleries
- The assessment was conducted in mid-2018; considerable progress has been made in standards and app development

Key Findings: Landscape Assessment

API Landscape Assessment Use Case Analysis

Primary Use Cases for APIs in Healthcare

API Landscape Assessment Use Case Analysis

Primary Use Cases for APIs in Healthcare cont.

Architectures for APIs/Apps

Apps can run in different configurations:

App

Personal Health Record

Apps can be standalone Cerner Apple Health Record App Apigee Epic (soon) Epic **Data Source Appriss Health** Cerner Smart Phone Allscripts API Apps can be embedded: 🔸 Data Aggregator Connector SANSOROHEALTH REDOX[^] App Aggregating data . from multiple EHRs Cleaningor ٠ **Electronic Health Record** Standardizing data · Adding security or monitoring

 Changing the protocol

App Gallery Review

App Gallery Review

- 271 applications available, as of August 2018
- The majority (69%, 186 of 271) were provider-facing apps

App Use Cases

EHR vendors support a variety of use cases

Common Characteristics of Provider-Facing Apps

- Use both proprietary and standards-based APIs
- Support both read and write functionalities
 - Write functionality is limited
 - Write implementations use proprietary APIs
- Undergo more rigorous vetting than patient-facing apps

Common Characteristics of Patient-Facing Apps

- Support read functionality almost exclusively
- Use FHIR-based APIs
 - Published FHIR end-points satisfy 2015 Edition Health IT Certification Criteria
- Undergo little or no vetting by EHR vendors
 - Authentication can be initiated via patient portals

API Development and Use

Key Issues to Advancing Provider- and Patient-Facing API Use

- A robust, stable, and widely used normative standard for FHIR
- Expansion of the US Core Data for Interoperability (common clinical data set) for clinical and administrative data
- Industry-accepted FHIR implementation guides for high-value write access use cases
- Data provenance rules and guidelines
- Sound data governance practices
- Transparent app vetting procedures or rubrics

High Value Use Cases for Patient-Facing Apps

- Questionnaires: Writing questionnaire responses back into the EHR (e.g., smoking cessation, PROs, SDOH)
- Meaningful aggregation of PGDH/PRO data: So it is presented with summary-level and/or actionable information at point of care
- Patient Data Correction: Developing an app that allows patients to contact their providers and request edits to their record (e.g., medication lists)
- Care Plan Creation and Adherence: Scheduling and reminding patients about preventive care screenings, follow-up visits, monitoring medication adherence
- Use of CDS Hooks: Leveraging APIs to process data and provide clinical decision support

Ongoing Assessments of App Marketplaces are Warranted

- Types of use cases apps can support
- Measures of adoption and use
- Number of vendors participating in voluntary vetting, code of conduct arrangements
- Availability of well-documented API specification for app developers

Thank You!

 Dullabh P, Hovey L, Heaney-Huls K, Rajendran N, Wright A, Sittig DF. Application Programming Interfaces in Health Care: Findings from a Current-State Sociotechnical Assessment. Applied Clinical Informatics Journal, January 2020: <u>https://www.thieme-</u> <u>connect.com/products/ejournals/html/10.1055/s-0039-</u> <u>1701001?update=true</u>

Thank You!

