PDMP Patient Matching Challenges and Opportunities – Utah’s Perspective

Naresh Sundar Rajan, PhD, MS
Senior Health Informaticist,
Controlled Substance Database,
Division of Occupation and Professional Licensing,
Utah Department of Commerce
Patient Matching Challenges/Opportunities

• Universal problem
 • “No single solution to patient matching” – GAO, Jan. 2019 Report to Congress

• Why the movement toward a patient identifier is only a start
 “Instead of looking at a national patient identifier as the definitive answer for solving our patient identification issues, we should not lose sight of a pragmatic, multi-faceted approach to improving patient matching—one that relies on a combination of probabilistic algorithms for connecting identifiers, processes and standards for data capture, biometric and identity verification tools and consumer involvement for managing their demographic information.” – Dan Cidon
Patient Matching Efforts in Utah – Beyond PDMP

• Department of Health MPI (DOHMPI)
 • Create a gold-standard MPI by linking different data sources across Utah, Vital Records, Cancer Registry, Controlled Substance Database, All-Payer Claims Database and etc.

• Utah Health Information Network (UHIN) - MPI
 • A REST-ful MPI Service to search patients across Utah’s population.
 • Authorized organizations can search using: Name, Gender, DOB, Address, Phone (Home, Work and Mobile) and SSN
Utah’s Controlled Substance Database

• Legislatively created 1995

• Collects data on dispensing of Schedule II– V drugs from retail, institutional, and outpatient hospital pharmacies, and in-state/out-of-state mail order pharmacies

• Housed with Division of Occupational and Professional Licensing (DOPL), Department of Commerce

• Current reporting standard: ASAP Version 4.2
Utah’s CSD – Data Elements for Patient Matching

- Demographics (PATIENT TABLES)
 - First Name (required)
 - Last Name (required)
 - DOB (required)
 - Address (required)
 - City (required)
 - Zip-code (required)
 - Gender (optional)
 - Middle Name (optional)
Common Demographics Data Elements Issues

• Quality of data elements
 • Missing values
 • Inaccurate values
 • Validity of address fields (address, zip, city)

• Other issues
 • Nicknames
 • Swapped names
 • Abbreviated names, addresses
 • Misspelled names
Existing Methods

• Traditional approaches – Fuzzy Algorithms

• Edit distance methods (Levenshtein, Affine Gap Distance)
 • character-by-character distance between two names
 • Cindy vs Cyndi

• Computationally expensive due to large pair-wise comparisons, for example: 10000 patients, close to 5 million comparisons.

• Other solutions: Proprietary and expensive
Existing Methods

• Dedupe Library
 • Open-source/paid version for advanced user (millions of records)
 • Python based library
 • Segmenting the data using first few characters of firstname/lastname
 • Scalability is still a bottleneck when applying on big-data (or even few million records)
Deep Probabilistic Patient Identity Resolution (DePPIR)

• Patient matching problem as a data science challenge
• Open-source (Python, PySpark/Apache Spark, TensorFlow)
• Supervised Machine Learning based methods and annotated ASAP 4.2 version data model
• Hybrid approaches for blocking data to reduced pair-wise comparison by a significant number
DePPIR – Architecture

• Architecturally Open-sourced supervised learning methods using annotated ASAP 4.2 data elements

• Custom built edit-based method for identifying nicknames

• Outputs probability of match, ranked k best matches
Current Stage – Modeling/Evaluation

- **OBTAIN**: Gather data from relevant sources
- **SCRUB**: Clean data to formats that machine understands
- **EXPLORE**: Find significant patterns and trends using statistical methods
- **MODEL**: Construct models to predict and forecast
- **INTERPRET**: Put the results into good use

Original by Hillary Mason and Chris Wiggins
Next Steps

• Result Validation/Evaluation
 • UHIN’s MPI
 • DOH-MPI

• Explore feasibility of exposing DePPIR as a service (using FHIR standards) for enhancing interstate PDMP Patient Matching

• Standardizing validity checks at the point of data ingestion to increase quality of data thereby increasing quality of matching downstream
 • Specifically for Address/zip/city fields
Summary

• Leverage use of sophisticated technologies (probabilistic theory/statistical methods)
• Reduce human errors, create standardized data capture methods, and validity checks at the point of data ingestion
• Improve matching by including external sources such as biometrics, and Internet of Things (IoT)
Acknowledgements

• Jeya Balaji Balasubmramanian, PhD, School of Computing and Information, University of Pittsburgh

• Kailah Davis, PhD, Director, Center for Health Data Informatics, Utah Department of Health
Thank you!

• Naresh Sundar Rajan
• Email: nsr@utah.gov or nsr.informatics@gmail.com