
NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 1 of 39

Nationwide Health Information Network
(NHIN)

Trial Implementations

Service Interface Specifications

NHIE Service Registry

V 1.1

1/30/2009

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 2 of 39

Contributors

Name Organization Area
Craig Miller NHIN-C Specification
Neel Phadke CareSpark Specification
Erik Rolf CareSpark Specification
Matt Weaver CareSpark Specification
Richard Doyle CareSpark Specification
Ravi Nistala NHIN-C Specification
Karen Witting IBM/IHE Specification
Eric Heflin Delaware Specification

Document Change History

Version Date Changed By Items Changed Since Previous Version
0.1 Craig Miller Initial Draft
1.0 Craig Miller Added sections on use cases and future directions;

governance preconditions; provided additional
documentation on UDDI tModel, registry
authentication and replication; editing for grammar,
clarity and formatting

1.1 01/30/2009 David L. Riley Minor edits to prepare for publication.

Document Approval

Version Date Approved By Role

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 3 of 39

Table of Contents
1 PREFACE ... 4

1.1 INTRODUCTION .. 4
1.2 INTENDED AUDIENCE .. 4
1.3 FOCUS OF THIS SPECIFICATION .. 4

2 NHIE INTERFACE ... 4
3 INTERFACE BETWEEN ... 5
4 NHIE CORE SERVICES AND USE CASES SUPPORTED ... 5

4.1 GET ALL NHIE DATA .. 5
4.2 GET DATA ABOUT NHIE’S BY STATE ... 5
4.3 GETTING DATA BY HOMECOMMUNITYID ... 5
4.4 SERVICE REGISTRY BACKUP .. 5

5 NHIE CONTEXT FOR USE ... 6
6 DESCRIPTION OF INTERFACE ... 6

6.1 REGISTRY DATA MODEL (UDDI TMODEL) ... 7
6.1.1 NHIN Taxonomies .. 9
6.1.2 Sample NHIN Service Registry Entry ..10
6.1.3 WSDL to UDDI Mapping (currently out of scope) ..15

6.2 INQUIRY API (CLIENT DISCOVERY API) ...18
6.2.1 Details..18
6.2.2 Sample – Using Inquiry APIs for NHIN Service Registry search ..21

6.3 SUBSCRIPTION API ...27
6.3.1 Steps for subscription and notification configuration with a sample scenario30

6.4 NHIE SERVICE REGISTRY SECURITY MODEL:..32
6.5 UDDI REPLICATION ...34

6.5.1 Replication Concepts ...34
6.5.2 tModel for UDDI replication ...38

7 OTHER STANDARDS ...38
8 MAPPING TO HITSP AND IHE TECHNICAL STANDARDS ..38
9 TECHNICAL PRE-CONDITIONS ..38
10 TECHNICAL POST-CONDITIONS ...38
11 FUTURE DIRECTIONS ..39

11.1 MOVING FROM A REGISTRY TO A REPOSITORY ...39
11.2 10.2 ENTITY DIRECTORY SERVICES...39

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 4 of 39

1 Preface

1.1 Introduction
The NHIN Trial Implementations Service Interface Specifications constitute the core services of
an operational Nationwide Health Information Network. They are intended to provide a standard
set of service interfaces that enable Nationwide Health Information Exchange (NHIE) to NHIE
exchange of interoperable health information. These services provide such functional capabilities
as patient look-up, document query and retrieve, notification of consumer preferences, and
access to logs for determining who has accessed what records and for what purpose for use.
These functional services rest on a foundational set of messaging and security services. The
current set of defined core services includes the following:

1. NHIN Trial Implementations Message Platform Service Interface Specification,
2. NHIN Trial Implementations Authorization Framework Service Interface Specification,
3. NHIN Trial Implementations Subject Discovery Service Interface Specification,
4. NHIN Trial Implementations Query for Documents Service Interface Specification,
5. NHIN Trial Implementations Document Retrieve Service Interface Specification,
6. NHIN Trial Implementations Audit Log Query Service Interface Specification,
7. NHIN Trial Implementations Consumer Preferences Service Interface Specification
8. NHIN Trial Implementations Health Information Event Messaging Service Interface

Specification
9. NHIN Trial Implementations NHIE Service Registry Interface Specification
10. NHIN Trial Implementations Authorized Case Follow-Up Service Interface Specification

It is expected that these core services will be implemented together as a suite since the functional
level services are dependent on the foundational services. Specifications #1 through #7 were the
focus of the August 2008 testing event and September AHIC demonstrations. Specifications #1
through #9 were included in the November testing and demonstrations during the December
2008 NHIN Trial Implementations Forum.

1.2 Intended Audience
The primary audience for the NHIN Trial Implementations Service Interface Specifications is the
individuals responsible for implementing software solutions that realize these interfaces for a
NHIE. After reading this specification, one should have an understanding of the context in which
the service interface is meant to be used, the behavior of the interface, the Web Services
Description Language (WSDLs) used to define the service, any Extensible Markup Language
(XML) schemas used to define the content and what “compliance” means from an implementation
testing perspective.

1.3 Focus of this Specification
This document presents the NHIN Trial Implementations Query for Documents Service Interface
Specification. The purpose of this specification is to provide the ability to exchange patient
specific clinical documents between NHIEs.

2 NHIE Interface
The NHIE Service Registry specification defines the capabilities and interfaces for one or more
Service Registries. These registries maintain the information required for one NHIE to discover
the existence of other NHIEs within the NHIN, and the associated information that enables one
NHIE to establish a connection to another NHIE. The selected platform for the NHIE Service
Registry is based on the Universal Description Discovery Interface (UDDI) version 3.0.2
specification, which is available for download at http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm#uddiv3.

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3�
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3�

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 5 of 39

NHIN Cooperative WG name
Security and Technical Working Group

3 Interface Between
This specification document specifies the interface between an NHIE and one or more Service
Registries that are maintained by the NHIN. It also specifies the replication interface between two
or more instances of NHIE Service Registries.

4 NHIE Core Services and use cases supported
This specification supports the Messaging Platform Core Service. It does not directly support any
identified AHIC use case. However, the NHIE Service Registry specification does address
underlying infrastructure requirements for connection management among NHIEs. There are four
important use cases that have been identified thus far:

4.1 Get all NHIE data
In this use case, an NHIE has been approved for participation within the NHIN and chooses to
retrieve all information available in the Service Registry. It requests a list of all other NHIE’s
currently registered, and all the services they support. This new NHIE will maintain its local
cache of this information for use in responding to local requests to share and retrieve data. This
NHIE will need to be notified when new NHIE’s are added to the Service Registry or when an
existing NHIE entry is changed. To do this the new NHIE will provide a subscription to the
Service Registry requesting notification of updates.

4.2 Get data about NHIE’s by state
In this use case, an NHIE has been approved for participation within the NHIN. Given the scope
of this NHIE it does not request all NHIE’s registered, but instead desires a subset of all NHIE’s in
a particular region or state. The new NHIE queries the Service Registry and specifies a list of
states to restrict the results.

A similar use case comes up when a patient requests that records from an NHIE in a particular
state be retrieved and the local NHIE has not previously searched for NHIE’s in that state. In
both these cases the requesting NHIE will want to subscribe for updates to its locally cached
information, or new NHIE entries matching its original query.

4.3 Getting data by homeCommunityId
There are several potential use cases which would require the ability to query the Service
Registry by a specific homeCommunityId to retrieve the service connection information for the
corresponding NHIE. For instance, the patient may have a printed paper, generated by an NHIE,
which includes a homeCommunityId, perhaps even in a form that could be scanned. Another
case is a notification may have been received which identifies the homeCommunityId which
contains the record of interest and the NHIE receiving the notification may not have previously
retrieved the service connection information for that NHIE. For these, and potentially others, the
NHIE submits a query to the Service Registry specifying the homeCommunityId and receives the
details about that community that have been saved in the Service Registry.

4.4 Service Registry backup
In the case of a physical malfunction of the site of the Service Registry, or a software failure, the
data in the service registry must still be available to communicating NHIE’s, requiring a backup
and replication function to support the malfunction of the primary.

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 6 of 39

5 NHIE context for use
A Service Registry provides the mechanism for NHIEs to discover and initially connect to each
other within the context of the network.

More specifically, for each NHIE within the NHIN, the Registry maintains the following
information:

• The name of the NHIE
• The unique network identifier (Home Community ID) of the NHIE
• A URI where the public key of the NHIE x.509 security certificate can be accessed
• A URI where the WSDL interface definitions for the NHIE can be accessed
• Contact information for the NHIE’s technical point of contact

In UDDI terminology, the structure of a registry entry is described using a tModel, which is
articulated below in this document. With this information, one NHIE can establish a secure
connection to another (using the x.509 public key), locate and invoke the services of other NHIEs
(based on the endpoints defined in the WSDLs), and uniquely identify and direct messages to
other NHIEs (using their Home Community ID).

The Service Registries are a necessary prerequisite to establish a scalable, national network
where the entities participating and the services they offer are dynamic. It is envisioned that
NHIEs will query a Registry to obtain connection information for another NHIE, but then cache
that information locally for subsequent communication with the other NHIEs, in order to improve
performance and minimize network bandwidth. However, the means and frequency of local
caching of this information is within the discretion of individual NHIEs and outside the scope of
this specification. This specification does define a Subscription interface that NHIEs can use to be
notified when changes are made to the Registry which should cause them to flush their local
cache and then re-query the Registry to obtain updated information.

The content of NHIE Service Registries will be entered and maintained by the governance body
established by the NHIN, not by individual NHIEs. Multiple Registry servers will be maintained by
this body in order to provide continuous availability; this specification defines a replication
interface to ensure that all copies of the Registry are synchronized with each other.

Access to the Registry is not available to the public. It will require NHIEs to authenticate
themselves to a Registry server using the NHIE’s x.509 certificate information. This is described
in more detail below.

6 Description of Interface

This section of the document is organized into five subsections:

• Registry Data Model, which describes the structure of the Registry entries for each
NHIE

• Inquiry API, which specifies how an NHIE can query a registry to obtain connection
information for another NHIE

• Subscription API, which specifies how an NHIE can subscribe to a Registry to be
notified of changes to Registry content that should prompt a re-query of the Registry

• Security, which describes how NHIEs must authenticate themselves to a Registry

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 7 of 39

• Replication, which defines the specification for ensuring that multiple copies of the
registry are synchronized with each other

6.1 Registry Data Model (UDDI tModel)
The UDDI data model is composed of four primary "top-level" entities each identified by a unique
identifier (UUID).

BusinessEntity - identifies a business or an organization providing the services. It captures the
following identifiable information about the business / organization. (E.g. information like Name of
the NHIE, Point of contacts can be captured here)

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 8 of 39

BusinessService – is the service provided by the organization. It captures the following
classification information. (E.g. Information regarding services implemented by a given NHIE can
be captured here)

BindingTemplate – provides the technical information required to access a service. (E.g. WSDL
specific information i.e. porttypes, etc. can be captured here)

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 9 of 39

tModel – is a core data structure within UDDI spec and represents the most detailed information
that a UDDI registry can provide about any specification. A BusinessEntity references tModels to
define value sets (e.g. organization categories, system of values categorization, etc.), to define
technical fingerprints (e.g. represent a spec that defines a soap protocol, etc.)

Assumptions
• UDDI queries based on specific WSDL artifacts are beyond the current scope of

requirements
• Assumed that nothing is known about the WSDL other than its URL

6.1.1 NHIN Taxonomies
Defining categorization scheme(s) is a key to reuse and enables flexible UDDI queries based on
the categorization. For NHIN service registry, the following custom categorizations are defined:

Name of Taxonomy Taxonomy Type Description Compatibility Current

Valid values
uddi:nhin:nhie:state CategoryBag The geographic

location of the
NHIE

BusinessEntity 2 letter state
codes (e.g.
VA, TN, etc.)

uddi:nhin:nhie:federalh
ie

CategoryBag Is it a federal NHIE BusinessService YES, NO

uddi:nhin:nhie:homeco
mmunityid

IdentifierBag A unique identifier
for the NHIE

BusinessEntity Value
defined in the
urn:oid
format

uddi:nhin:nhie:publicke
yuri

CategoryBag URI to the public
key of the NHIE

BusinessEntity URI to the
public key

uddi:nhin:uniformservi
cename

CategoryBag A uniform
(standardized) name
for the NHIN
business service

BusinessService AuditLogQue
ryService,
DocumentQu
eryService,
DocumentRet
rieveService,
SubjectDisco
veryService

uddi:nhin:versionofser CategoryBag Indicates the current BusinessService Value is of

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 10 of 39

vice version of the
service

the form
Integer.Intege
r (e.g. 1.0,
1.1, 2.0, etc.)

6.1.2 Sample NHIN Service Registry Entry
The following sample business entity is modeled Based on the above taxonomies. The sample
also outlines the required and optional elements for the NHIN service registry:

<?xml version="1.0" encoding="UTF-8"?>
<businessEntity businessKey="uddi:caresparknode:aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa">
 <!-- REQUIRED: Name of the HIE -->
 <name>CareSpark</name>

 <!-- OPTIONAL: alternate name for the HIE -->
 <name>CareSpark RHIO</name>

 <!-- REQUIRED: HIE's website home page url -->
 <discoveryURLs>
 <discoveryURL useType="homepage">
 http://www.carespark.com
 </discoveryURL>
 </discoveryURLs>

 <!-- REQUIRED: Brief description about the HIE -->
 <description>Health Information Exchange in the Tennessee region</description>

 <!-- REQUIRED: HIE Contact details. Atleast ONE contact element is required with

personName, phone, email & address elements defined -->
 <contacts>
 <contact>
 <personName>John Doe</personName>
 <phone>111-111-1111</phone>
 <email>john.doe@carespark.com</email>
 <address>
 <addressLine>112 W. Main Street</addressLine>
 <addressLine>Kingsport, TN 37662</addressLine>
 </address>
 </contact>
 </contacts>

 <!-- REQUIRED: The custom taxonomies defined for the business entity -->
 <identifierBag>
 <keyedReference
 tModelKey="uddi:nhin:nhie:homecommunityid"
 keyValue="urn:oid:2.16.840.1.113883.3.166.4"/>
 </identifierBag>

 <!-- REQUIRED: The custom taxonomies defined for the business entity -->
 <categoryBag>
 <!-- Only ONE reference to the uddi:nhin:nhie:state is mandatory. There could be

multiple references -->
 <keyedReference
 tModelKey="uddi:nhin:nhie:state"
 keyValue="TN"/>
 <keyedReference
 tModelKey="uddi:nhin:nhie:state"
 keyValue="VA"/>

 <keyedReference
 tModelKey="uddi:nhin:nhie:federalhie"

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 11 of 39

 keyValue="NO"/>
 <keyedReference
 tModelKey="uddi:nhin:nhie:publickeyuri"
 keyValue=" https://www.NhinGovernanceServer/pki/id48.cer"/>
 </categoryBag>
 <businessServices>
 <businessService
 businessKey="uddi:caresparknode:aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"
 serviceKey="uddi:caresparknode:bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb">

 <!-- REQUIRED: Brief name of the business service -->
 <name>Audit Log Query Service</name>

 <!-- REQUIRED: Brief description about the service -->
 <description>Service to retrieve audit events for a given date

range</description>

 <!-- REQUIRED: The custom taxonomies defined for the business service -->
 <categoryBag>
 <keyedReference
 tModelKey="uddi:nhin:uniformservicename"
 keyValue="AuditLogQueryService"/>
 <keyedReference
 tModelKey="uddi:nhin:versionofservice"
 keyValue="1.0"/>
 </categoryBag>
 <bindingTemplates>
 <bindingTemplate
 serviceKey="uddi:caresparknode:bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb"
 bindingKey="uddi:caresparknode:cccccccc-cccc-cccc-cccc-cccccccccccc">

 <!-- REQUIRED: Brief about the service's technical information -->
 <description>AuditLogQuery service implemented as a web-service. Supports

saml over 2way ssl </description>

 <!-- REQUIRED: location of the the service endpoint -->
 <accessPoint useType="endPoint">

http://csnhintiapps03.cgifederal.com:5050/findAuditEvents/AuditLogQueryService
 </accessPoint>

 <!-- REQUIRED: tModels for service WSDL and transport -->
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:nhin:auditlogquery_interface"/>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 <businessService
 businessKey="uddi:caresparknode:aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"
 serviceKey="uddi:caresparknode:dddddddd-dddd-dddd-dddd-dddddddddddd">

 <!-- REQUIRED: Brief name of the business service -->
 <name>Subject Discovery Service</name>

 <!-- REQUIRED: Brief description about the service -->
 <description>Service to perform subject discovery over NHIN</description>

 <!-- REQUIRED: The custom taxonomies defined for the business service -->
 <categoryBag>
 <keyedReference
 tModelKey="uddi:nhin:uniformservicename"

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 12 of 39

 keyValue="SubjectDiscoveryService"/>
 <keyedReference
 tModelKey="uddi:nhin:versionofservice"
 keyValue="2.0"/>
 </categoryBag>
 <bindingTemplates>
 <bindingTemplate
 serviceKey="uddi:caresparknode:dddddddd-dddd-dddd-dddd-dddddddddddd"
 bindingKey="uddi:caresparknode:eeeeeeee-eeee-eeee-eeee-eeeeeeeeeeee">

 <!-- REQUIRED: Brief about the service's technical information -->
 <description>Subject discovery service implemented as a web-service.

Supports saml over 2way ssl </description>

 <!-- REQUIRED: location of the the service endpoint -->
 <accessPoint useType="endPoint">

https://csnhintiapps03.cgifederal.com:6151/SubjectDiscoveryRespondingGatewayService/Subject
DiscoveryRespondingGatewayPort

 </accessPoint>

 <!-- REQUIRED: tModels for service WSDL and transport -->
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey="uddi:nhin:subjectdiscovery_interface"/>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 </businessServices>
</businessEntity>

The above sample references the following common custom tModels defined for NHIN Service
registry:

 <!-- Home community id identifier -->
 <tModel tModelKey="uddi:nhin:nhie:homecommunityid">
 <name>nhin-nhie-homecommunityid</name>
 <description>Home community ID</description>
 <categoryBag>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:identifier" keyValue="identifier"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:unchecked" keyValue="unchecked"/>
 </categoryBag>
 </tModel>

 <!-- State Category -->
 <tModel tModelKey="uddi:nhin:nhie:state">
 <name>nhin-nhie-state</name>
 <description>NHIE State</description>
 <categoryBag>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:categorization" keyValue="categorization"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:unchecked" keyValue="unchecked"/>
 </categoryBag>

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 13 of 39

 </tModel>

 <!-- NHIE Federal HIE Category -->
 <tModel tModelKey="uddi:nhin:nhie:federalhie">
 <name>nhin-nhie-federalhie</name>
 <description>Is HIE Federal HIE</description>
 <categoryBag>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:categorization" keyValue="categorization"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:unchecked" keyValue="unchecked"/>
 </categoryBag>
 </tModel>

<!-- State Category -->
 <tModel tModelKey="uddi:nhin:nhie:publickeyuri">
 <name>nhin-nhie-publickeyuri</name>
 <description>URI to the public key</description>
 <categoryBag>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:categorization" keyValue="categorization"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:unchecked" keyValue="unchecked"/>
 </categoryBag>
 </tModel>

 <!-- NHIN Uniform Service Name Category -->
 <tModel tModelKey="uddi:nhin:uniformservicename">
 <name>nhin-uniformservicename</name>
 <description>Uniform Service Name</description>
 <categoryBag>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:categorization" keyValue="categorization"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:unchecked" keyValue="unchecked"/>
 </categoryBag>
 </tModel>

 <!-- NHIN Version of Service Category -->
 <tModel tModelKey="uddi:nhin:versionofservice">
 <name>nhin-versionofservice</name>
 <description>Service Version Number</description>
 <categoryBag>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:categorization" keyValue="categorization"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:unchecked" keyValue="unchecked"/>
 </categoryBag>
 </tModel>

 <!—tModel for the AuditLogQueryService -->
 <tModel tModelKey="uddi:nhin:auditlogquery_interface">
 <name>nhin:auditlogquery_interface</name>

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 14 of 39

 <description>This tModel represents the Audit Log Query Service
WSDL as defined by the NHIN cooperative.</description>
 <overviewDoc>
 <overviewURL
useType="wsdlInterface">http://NhinGovernanceServer
/findAuditEvents/AuditLogQuery.wsdl</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-org:types:wsdl"
keyValue="wsdlSpec"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-org:types:soap"
keyValue="soapSpec"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-org:types:xml"
keyValue="xmlSpec"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:specification" keyValue="specification"/>
 </categoryBag>
 </tModel>

 <!—tModel for the SubjectDiscoveryService -->
 <tModel tModelKey="uddi:nhin:subjectdiscovery_interface">
 <name>nhin:subjectdiscovery_interface</name>
 <description>This tModel represents the Subject Discovery Service
WSDL as defined by the NHIN cooperative </description>
 <overviewDoc>
 <overviewURL
useType="wsdlInterface">http://NhinGovernanceServer
/someFolder/SubjectDiscovery.wsdl</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-org:types:wsdl"
keyValue="wsdlSpec"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-org:types:soap"
keyValue="soapSpec"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-org:types:xml"
keyValue="xmlSpec"/>
 <keyedReference
tModelKey="uddi:uddi.org:categorization:types" keyName="uddi-
org:types:specification" keyValue="specification"/>
 </categoryBag>
 </tModel>

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 15 of 39

6.1.3 WSDL to UDDI Mapping (currently out of scope)
WSDL to UDDI mapping enables precise and flexible UDDI queries based on specific WSDL
artifacts and metadata. The OASIS UDDI spec technical note (http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm) describes the mapping
methodology for the UDDI. The sections below have been extracted from the OASIS
specification.

Mapping Overview -
The diagram below describes the methodology for mapping WSDL 1.1 to UDDI V2/V3.

Mapping Table
The table below has been derived from the OASIS UDDI recommendation.

WSDL artifact Corresponding UDDI

element
Rules

wsdl:service uddi:businessService Only one wsdl:service can be modeled by an
individual uddi:businessService.

If a new businessService is created, the uddi:name
elements of this businessService SHOULD be
human readable names, although if no human
readable names are specified, exactly one
uddi:name MUST be added, containing the value of
the name attribute of the wsdl:service

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm�
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm�

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 16 of 39

The businessService MUST contain a categoryBag

categoryBag MUST contain A keyedReference with
a tModelKey of the WSDL Entity Type category
system and a keyValue of "service" AND/OR A
keyedReference with a tModelKey of the XML
Local Name category system and a keyValue that is
the value of the name attribute of the wsdl:service

If the wsdl:service has a targetNamespace then the
categoryBag MUST also contain an additional
keyedReference with a tModelKey of the XML
Namespace category system and a keyValue of the
target namespace of the wsdl:definitions element
that contains the wsdl:service

The bindingTemplates element of the
businessService MUST include bindingTemplate
elements that model the ports of the service

wsdl:port uddi:bindingTemplate A wsdl:port MUST be modeled as a
uddi:bindingTemplate

tModelInstanceDetails element MUST be present

The bindingTemplate tModelInstanceDetails
element MUST contain at least the following
tModelInstanceInfo elements:

A tModelInstanceInfo element MUST be present
with a tModelKey of the tModel that models the
wsdl:binding that this port implements. The
instanceParms of this tModelInstanceInfo MUST
contain the wsdl:port local name

A tModelInstanceInfo element MUST be present
with a tModelKey of the tModel that models the
wsdl:portType

soap:address uddi:accessPoint A soap:address MUST be modeled as a

uddi:accessPoint in the uddi:bindingTemplate that
models the wsdl:port that contains the soap:address

The accessPoint value MUST be the value of the
location attribute of the soap:address element

The useType attribute of the accessPoint MUST
correspond to the transport specified by the
soap:binding, or "other" if no correspondence
exists. In the case of the HTTP transport, for
example, the URLType attribute MUST be "http"

wsdl:binding uddi:tModel The uddi:name element of the tModel MUST be the

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 17 of 39

value of the name attribute of the wsdl:binding

The tModel MUST contain a categoryBag

categoryBag MUST contain a keyedReference with
a tModelKey of the WSDL Entity Type category
system and a keyValue of "binding"

categoryBag MUST contain a keyedReference with
a tModelKey of the WSDL portType Reference
category system and a keyValue of the tModelKey
that models the wsdl:portType to which the
wsdl:binding relates

categoryBag MUST contain a keyedReference with
a tModelKey of the UDDI Types category system
and a keyValue of "wsdlSpec" for backward
compatibility

categoryBag MUST contain a one or two
keyedReferences as required to capture the protocol
and optionally the transport information

If the wsdl:binding has a targetNamespace then the
categoryBag MUST also contain an additional
keyedReference with a tModelKey of the XML
Namespace category system and a keyValue of the
target namespace of the wsdl:definitions element
that contains the wsdl:binding

If the targetNamespace is absent from the portType,
a categoryBag MUST NOT contain a
keyedReference to the XML Namespace category
system

The tModel MUST contain an overviewDoc with an
overviewURL containing the location of the WSDL
document that describes the wsdl:binding.

wsdl:portType uddi:tModel The uddi:name element of the tModel MUST be the

value of the name attribute of the wsdl:portType

The tModel MUST contain a categoryBag, and the
categoryBag MUST contain a keyedReference with
a tModelKey of the WSDL Entity Type category
system and a keyValue of "portType"

If the wsdl:portType has a targetNamespace then
the categoryBag MUST also contain an additional
keyedReference with a tModelKey of the XML
Namespace category system and a keyValue of the
target namespace of the wsdl:definitions element

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 18 of 39

that contains the wsdl:portType

If the targetNamespace is absent from the portType,
a categoryBag MUST NOT contain a
keyedReference to the XML Namespace category
system

The tModel MUST contain an overviewDoc with an
overviewURL containing the location of the WSDL
document that describes the wsdl:portType.

Future work – Based on the above table, it would be required to define custom taxonomies. The
NHIN service registry business entities would have to be re-defined using the custom taxonomies
and standard (WSDL specific) tModels.

6.2 Inquiry API (Client discovery API)

The UDDI V3.0.2 inquiry APIs provide a simple and complete set of programming interfaces,
these interfaces can be used to:
• Search the UDDI registry to locate registry entries (business / technical) pertaining to the given
search criteria
• Retrieve further details of a given registry entry.

6.2.1 Details
A summary of all the inquiry API’s supported by UDDI v3 specification are defined in Appendix F.
Details of all the API’s can be found in sections 5.1.9 to 5.1.18 of the UDDI specification.
Below is a detailed description of subset of inquiry APIs that would be required to perform
searches on the NHIN service registry:

1) find_business – This API is used to locate which of the organization are registered with
the UDDI. This will return the list of the organizations (both federal and non federal) which
matches the criteria.

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 19 of 39

The syntax of the return list is:

See section 5.1.10 of the UDDI specification for more details.

2) find_service – The find_service API is used to find UDDI businessService elements. The

find_service API call returns a serviceList structure that matches the conditions specified
in the arguments. In the case of NHIE these will be the services which will get you the
URL to get to the core services WSDL’s.

This API call returns a serviceList on success

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 20 of 39

See section 5.1.12 of the UDDI specification for more details.

3) get_serviceDetail – This API is used to get details of business services implemented at

a particular NHIE gateway.

This API call returns a serviceDetail on successful match of the specified serviceKey values.

See section 5.1.17 of the UDDI specification for more details.

4) get_bindingDetail - This API is needed if we need to get the location of the WSDL. The
required parameters are shown below.

This API returns the binding detail upon success. The binding detail contains the location of
the WSDL.The location is defined at “overviewURL”

See section 5.1.14 of the UDDI specification for more details.

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 21 of 39

5) get_businessDetail – This API is needed if we need to get to the public key. The input
parameter required for this API is business key which we can from either find_business
or from find_service. The structure of the input is as specified below.

The response contains the business details which contains the category bag for public key.

The find_XX API does contain an argument called “maxRows” where you can specify how many
rows to return. Get_XX APIs do not have this attribute. In the event of a large number of matches
(this can be configured at the implementation node), or if the number of matches exceeds the
value of the maxRows attribute, the node MAY truncate the result set. When this occurs, the
returned list contains the attribute "truncated" with the value of this attribute set to "true".

Find qualifiers are used with find_XX API’s. Each of the find_xx API accepts an optional
findQualifier values. Find qualifiers may be either tModelKeys or may be referenced by a string
containing a "short name". Each of the pre-defined findQualifiers in UDDI can be referenced
using either the appropriate tModelKey, or by its short name. Registries MUST support both
forms, and MUST accept the find qualifiers case-insensitively. There are some invalid
combinations of findQualifier’s. Details can be found in section 5.1.4.

Note that the APIs can be invoked over a SSL transport layer and the authentication/authorization
mechanism is based on PKI/X509. More details can be found under section 5.4.

6.2.2 Sample – Using Inquiry APIs for NHIN Service Registry search
This section describes the usage of Inquiry APIs for searching the NHIN service registry.

Assume that we have the following BusinessEntity as described by the sample below.

<businessEntity businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11 "
xmlns="urn:uddi-org:api ">
<!-- REQUIRED: Name of the HIE -->
<name>NHIEGateway</name>
<!-- REQUIRED: HIE's website home page url -->
<discoveryURLs>
 <discoveryURL useType="homepage">

http://nhie.fedsconnect.org
 </discoveryURL>
 </discoveryURLs>
<!-- REQUIRED: HIE's website home page url -->
 <description>Health Information Exchange for the Federal Agency</description>
<!-- REQUIRED: HIE Contact details. Atleast ONE contact element is required with
personName, phone, email & address elements defined -->
 <contacts>
 <contact>
 <personName>Manager</personName>
 <phone>111-111-1111</phone>
 <email>manager@fedsconnect.org </email>
 <address>
 <addressLine>112 W. Main Street</addressLine>
 <addressLine>Kingsport, TN 37662</addressLine>
 </address>
 </contact>
 </contacts>

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 22 of 39

<!-- REQUIRED: The custom taxonomies defined for the business entity -->
 <identifierBag>
 <keyedReference

tModelKey="uddi:nhin:nhie:homecommunityid"
keyValue="urn:oid:2.16.840.1.113883.3.166.4"/>

 </identifierBag>
<!-- REQUIRED: The custom taxonomies defined for the business entity -->
 <categoryBag>
<!-- Only ONE reference to the uddi:nhin:nhie:state is mandatory. There could be multiple
references -->
 <keyedReference

tModelKey="uddi:nhin:nhie:state"
keyValue="TN"/>

 <keyedReference
tModelKey="uddi:nhin:nhie:state"

keyValue="VA"/>
<keyedReference

tModelKey="uddi:nhin:nhie:federalhie"
keyValue="YES"/>
<keyedReference
tModelKey="uddi:nhin:nhie:publickeyuri"
keyValue=" https://www.NhinGovernanceServer/pki/id48.cer"/>

 </categoryBag>
 <businessServices>
 <businessService

businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11 "
serviceKey=" uddi:nhiedomain.com:93afd501-12d5-4023-b733-f3036a10a546 ">
<!-- REQUIRED: Brief name of the business service -->

 <name>Audit Log Query Service</name>
<!-- REQUIRED: Brief description about the service -->
 <description>Service to retrieve audit events for a given date range</description>
<!-- REQUIRED: The custom taxonomies defined for the business service -->
 <categoryBag>
 <keyedReference

tModelKey="uddi:nhin:uniformservicename"
keyValue="AuditLogService"/>

 <keyedReference
tModelKey="uddi:nhin:versionofservice"
keyValue="1.0"/>

 </categoryBag>
 <bindingTemplates>
 <bindingTemplate

serviceKey=" uddi:nhiedomain.com:93afd501-12d5-4023-b733-f3036a10a546 "
bindingKey=" uddi:nhiedomain.com:b6c2a9f8-a88b-48bc-98a3-b160dabc4232 ">
<!-- REQUIRED: Brief about the service's technical information -->

 <description>AuditLogQuery service implemented as a web-service with soap over
http</description>
<!-- REQUIRED: location of the WSDL -->
 <accessPoint useType="endPoint">

http:// nhie.fedsconnect.org:18181/findAuditEvents/AuditLogQuery
 </accessPoint>
<!-- REQUIRED: tModels for service WSDL and transport -->
<tModelInstanceDetails>
<tModelInstanceInfo tModelKey="uddi:nhin:auditlogquery_interface"/>
</tModelInstanceDetails>

 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 <businessService

businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11 "
serviceKey=" uddi:nhiedomain.com:242c7a13-7914-4284-9212-9e551849f7fd ">
<!-- REQUIRED: Brief name of the business service -->

 <name>Subject Discovery Service</name>
<!-- REQUIRED: Brief description about the service -->
 <description>Service to perform subject discovery over NHIN</description>
<!-- REQUIRED: The custom taxonomies defined for the business service -->
 <categoryBag>
 <keyedReference

tModelKey="uddi:nhin:uniformservicename"

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 23 of 39

keyValue=" SubjectDiscoveryService "/>
 <keyedReference

tModelKey="uddi:nhin:versionofservice"
keyValue="2.0"/>

 </categoryBag>
 <bindingTemplates>
 <bindingTemplate

serviceKey=" uddi:nhiedomain.com:242c7a13-7914-4284-9212-9e551849f7fd "
bindingKey=" uddi:nhiedomain.com:4a3c042d-9687-484e-8857-c6d994bfed60 ">
<!-- REQUIRED: Brief about the service's technical information -->

 <description>Subject discovery service implemented as a web-service with soap
over http</description>
<!-- REQUIRED: location of the WSDL -->
 <accessPoint useType="endPoint">

 http:// nhie.fedsconnect.org:18181/PIXConsumer_Soap11
 </accessPoint>
<!-- REQUIRED: tModels for service WSDL and transport -->
<tModelInstanceDetails>
<tModelInstanceInfo tModelKey="uddi:nhin:subjectdiscovery_interface"/>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 </businessServices>
</businessEntity>

1) a) If the requester knows the name of the business then a call to the find_business API
is made which returns business details. This business details contains businessKeys,
service keys implemented by the business entities. This scenario is normally used when
the NHIE wants to find for a particular business entity.

Fig2 below shows the query and the result of find_business API call.

FIG 2:

Query 1

<find_business>
 <name> NHIEGateway </name>
</find_business>

Result 1

<businessList>
 <businessInfos>
 <businessInfo

businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11 ">
 <name> NHIEGateway </name>
 <description>

Health Information Exchange for the Federal Agency
 </description>
 <serviceInfos>
 <serviceInfo

businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11 "
serviceKey=" uddi:nhiedomain.com:93afd501-12d5-4023-b733-f3036a10a546 ">

 <name> Audit Log Query Service </name>
 </serviceInfo>
 <serviceInfo

businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11"
serviceKey=" uddi:nhiedomain.com:242c7a13-7914-4284-9212-9e551849f7fd ">

 <name> Subject Discovery Service </name>
 </serviceInfo>
 </serviceInfos>
 </businessInfo>
 <businessInfos>

NHIN Trial Implementations NHIE Service Registry
Service Interface Specification v 1.1

NHIN Cooperative Technical and Security Work
Group

Page 24 of 39

</businessList>

b) If the requester knows the service name then “find_service” API is called which
returns all the services which match the criteria from multiple business entities. The
sample below shows how it could be implemented.

Query 2

<find_service>
 <name> Audit Log Query Service </name>
 <categoryBag>

 <keyedReference
 tModelKey="uddi:nhin:uniformservicename"
 keyValue="AuditLogService"/>
<keyedReference
 tModelKey="uddi:nhin:versionofservice"
 keyValue="1.0"/>

 </categoryBag>
</find_service>

Result 2

<serviceList>
 <serviceInfos>
 <serviceInfo

businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11 "
serviceKey=" uddi:nhiedomain.com:93afd501-12d5-4023-b733-f3036a10a546 ">

 <name> Audit Log Query Service </name>
 </serviceInfo>
 </serviceInfos>
</serviceList>

2) From both a and b above we can get the service key. Then using the service key a call to
get_serviceDetail API. This API call returns a serviceDetail on successful match of the
specified serviceKey values. The service details contain business services. Each
business services contain multiple binding templates. A sample is provided below.

Query 3

<get_serviceDetail>
 <serviceKey> uddi:nhiedomain.com:93afd501-12d5-4023-b733-f3036a10a546 </serviceKey>
</get_serviceDetail>

Result 3

<serviceDetail>
 <businessServices>

 <businessService

businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11 "
serviceKey=" uddi:nhiedomain.com:93afd501-12d5-4023-b733-f3036a10a546 ">
<!-- REQUIRED: Brief name of the business service -->

 <name>Audit Log Query Service</name>
<!-- REQUIRED: Brief description about the service -->
 <description>Service to retrieve audit events for a given date range</description>
<!-- REQUIRED: The custom taxonomies defined for the business service -->
 <categoryBag>
 <keyedReference

tModelKey="uddi:nhin:uniformservicename"
keyValue="AuditLogService"/>

 <keyedReference
tModelKey="uddi:nhin:versionofservice"

keyValue="1.0"/>
 </categoryBag>
 <bindingTemplates>
 <bindingTemplate

serviceKey=" uddi:nhiedomain.com:93afd501-12d5-4023-b733-f3036a10a546 "
bindingKey=" uddi:nhiedomain.com:b6c2a9f8-a88b-48bc-98a3-b160dabc4232 ">
<!-- REQUIRED: Brief about the service's technical information -->

 <description>AuditLogQuery service implemented as a web-service with soap over
http</description>
<!-- REQUIRED: location of the WSDL -->
 <accessPoint useType="endPoint">

http:// nhie.fedsconnect.org:18181/findAuditEvents/AuditLogQuery
 </accessPoint>
<tModelInstanceDetails>
<tModelInstanceInfo tModelKey="uddi:nhin:auditlogquery_interface"/>
</tModelInstanceDetails>

 </bindingTemplate>
 </bindingTemplates>
 </businessService>
</businessServices>
</serviceDetail>

3) Each binding template contains an attribute called “access point” whose value we will
give the URL to the service endpoint. This end point is needed to invoke the service.

4) If we need to get to the WSDL we need to invoke the get_bindingDetail API and pass the
binding key which can obtained from the get_ServiceDetails API.

5) If the public key is needed from the business entity the get_businessDetail API can be
made with the businessKey as the parameter. The business key can be found in
response from the find_business API.

Query 5

<get_businessDetail>
 <businessKey> uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11 </businessKey>
</get_businessDetail>

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 26 of 39

Result 5

<businessDetail>
 <businessEntity businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11>
<!-- REQUIRED: Name of the HIE -->
<name>NHIEGateway</name>
<!-- REQUIRED: HIE's website home page url -->
<discoveryURLs>
 <discoveryURL useType="homepage">

http://nhie.fedsconnect.org
 </discoveryURL>
 </discoveryURLs>
<!-- REQUIRED: HIE's website home page url -->
 <description>Health Information Exchange for the Federal Agency</description>
<!-- REQUIRED: HIE Contact details. Atleast ONE contact element is required with personName,
phone, email & address elements defined -->
 <contacts>
 <contact>
 <personName>Manager</personName>
 <phone>111-111-1111</phone>
 <email>manager@fedsconnect.org </email>
 <address>
 <addressLine>112 W. Main Street</addressLine>
 <addressLine>Kingsport, TN 37662</addressLine>
 </address>
 </contact>
 </contacts>
<!-- REQUIRED: The custom taxonomies defined for the business entity -->
 <identifierBag>
 <keyedReference

tModelKey="uddi:nhin:nhie:homecommunityid"
keyValue="urn:oid:2.16.840.1.113883.3.166.4"/>

 </identifierBag>
<!-- REQUIRED: The custom taxonomies defined for the business entity -->
 <categoryBag>
<!-- Only ONE reference to the uddi:nhin:nhie:state is mandatory. There could be multiple
references -->
 <keyedReference

tModelKey="uddi:nhin:nhie:state"
keyValue="TN"/>

 <keyedReference
tModelKey="uddi:nhin:nhie:state"

keyValue="VA"/>
<keyedReference

tModelKey="uddi:nhin:nhie:federalhie"
keyValue="YES"/>
<keyedReference
tModelKey="uddi:nhin:nhie:publickeyuri"
keyValue=" https://www.NhinGovernanceServer/pki/id48.cer"/>

 </categoryBag>
 <businessServices>
 <businessService

businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11 "
serviceKey=" uddi:nhiedomain.com:93afd501-12d5-4023-b733-f3036a10a546 ">

</businessService>
<businessService

businessKey=" uddi:nhiedomain.com:155463c5-b027-41a7-a7c9-b99f0b0bcb11 "
serviceKey=" uddi:nhiedomain.com:242c7a13-7914-4284-9212-9e551849f7fd ">

</businessService>

</businessEntity>
</businessDetail>

NOTE: The NHIN UDDI registry will not store the service WSDL but would have reference to the
location where the WSDL is stored.

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 27 of 39

There are typically 2 ways to invoke these API’s.

a) Using the Programming API. One should have the client API files to support this. The Java
implementation can be downloaded from here:
http://sourceforge.net/project/showfiles.php?group_id=220485&package_id=266239

b) Using UDDI browsers – these browsers provide a UI to interact with UDDI registry nodes.

List of Open source Projects which are UDDI V3 compliant

• JOrbit http://sourceforge.net/projects/jorbit

• SCOUD http://sourceforge.net/projects/scoud

• OpenUDDI – http://openuddi.sourceforge.net/

• ruddi http://www.ruddi.org/ (Note: The license is free only if you want to contribute back.)

• Novell NSure Browser – compatible with OpenUDDI
(http://developer.novell.com/wiki/index.php/Special:Downloads/uddiserver/Novell~~~Nsure~~
~UDDI~~~Server/1.1.3/)

6.3 Subscription API

Subscription provides clients, known as subscribers, with the ability to register their interest in receiving
information concerning changes made in a UDDI registry.

The tModel(s) for the subscription are:

• uddi-org:subscription_v3
• uddiorg:subscriptionListener_v3

More details regarding tModels are described in 11.2.10 of the UDDI specification.
The security mechanisms including integrity and confidentiality are implemented as described in the
section 5.4 of this specification. Subscribers referred to in this document refer to NHIE gateways. NHIE
Gateways subscribe to UDDI node service registry.

In general, according to the UDDI v3 specification subscriptions can be made any changes to entities. But
the scope of this specification only pertains to changes in businessEntity, businessService,
bindingTemplate, and tModel. These entities are considered to be changed if the modified
IncludingChildren elements of the operationalInfo element of the entities have been changed.

Subscription allows subscribers to "monitor" a particular subset of data within a registry. Two patterns are
defined. UDDI nodes MAY support either or both:

• Asynchronous notification – subscribers choose to be asynchronously notified by the node
when registry data of interest changes via calls to the notify_subscriptionListener API, which they
implement as a "subscription listener" service.

• Synchronous change tracking – subscribers issue a synchronous request using the get_
subscriptionResults API to obtain information on activity in the registry which matches their
subscription preferences.

In case of an NHIE, it is recommended to use asynchronous notification from a performance point of
view.

http://sourceforge.net/project/showfiles.php?group_id=220485&package_id=266239�
http://sourceforge.net/projects/jorbit�
http://sourceforge.net/projects/scoud�
http://openuddi.sourceforge.net/�
http://www.ruddi.org/�
https://webmail.vangent.com/exchweb/bin/redir.asp?URL=http://developer.novell.com/wiki/index.php/Special:Downloads/uddiserver/Novell~~~Nsure~~~UDDI~~~Server/1.1.3/�
https://webmail.vangent.com/exchweb/bin/redir.asp?URL=http://developer.novell.com/wiki/index.php/Special:Downloads/uddiserver/Novell~~~Nsure~~~UDDI~~~Server/1.1.3/�
https://webmail.vangent.com/exchweb/bin/redir.asp?URL=http://developer.novell.com/wiki/index.php/Special:Downloads/uddiserver/Novell~~~Nsure~~~UDDI~~~Server/1.1.3/�

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 28 of 39

Any of the existing standard inquiry APIs (find_xx and get_xx) defined in UDDI v3 specification, may be
used within a subscription request to define the criteria. Please refer to the Inquiry API provided in section
5.2.

The duration, or life of a subscription is also a matter of node policy, but subscribers can renew existing
subscriptions periodically instead of having to create new ones. Subscribers may also create multiple
subscriptions. Each subscription request is treated independently. The level of detail provided for the data
returned is controlled by the subscription request.

NHIE gateways will implement an HTTP/SOAP based web services as subscription listeners. The UDDI
registry will send a notification to this web service endpoint.

An NHIE will use keyBag while returning the results from the subscription. A keyBag contains a list of
entity keys, which correspond to any of the core data structures (businessEntity, businessService,
bindingTemplate or tModel). The keyBag has two uses:

• Returning results when a "brief" format is selected, this minimizes returned information.
• Indicating entities which have been deleted, or which no longer match the subscription criteria

provided with the subscription.

In general there are 5 subscription API’s provided by the UDDI v3 specification. But the subscription API’s
implemented by NHIE is a subset of those and are as follows:

1) save_subscription: Establishes a new subscription or changes an existing one. Also used to renew

existing subscriptions. The attribute “Brief” will be set to true in order to get the return in keyBag.

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 29 of 39

The subscription contains data which is automatically generated by the implementation. It also contains
subscription filter which need to be filled .It is recommended to specify only uddi:get_serviceDetail as the
subscription filter.

See section 5.5.8.1 of the UDDI v3 specification for more details.

2) delete_subscription: Cancels one or more specified subscriptions

See section 5.5.9.1 of the UDDI v3 specification for more details.

3) notify_subscriptionListener: This API is invoked by UDDI registry. The subscriber implements as a
subscription listener service to accept notifications containing the data that changed since
notify_subscriptionListener was last invoked for a particular subscription.

This is an optional API from a UDDI perspective but it will be useful for our implementation. This API
allows us to implement asynchronous notification. It enables the node to deliver notifications to
subscription listeners by invoking a Web service.

Upon successful completion, notify_subscriptionListener returns an empty message. Note that this is
being returned by the NHIE gateway. The “brief” attribute value will be set to true in order to get result as
a keyBag.

To allow subscribers to determine whether a notification has been lost, the coverage period of the
notification is included. A date/time indicating the date/time values corresponding to the start and end
points of this is provided. The start date/time used in this call SHOULD align with the end date/time of the
previous call and so fourth.

See section 5.5.12.1 of the UDDI v3 specification for more details.

3) get_subscriptionResults: This API allows the client to call synchronously to the UDDI node. The

syntax of sending this request is as described below.

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 30 of 39

The response is a subscriptionList. The sample 3 and 4 described how the request is sent and response
is received.

Please look at section 5.5.11 of the UDDI specification for more details.

6.3.1 Steps for subscription and notification configuration with a sample scenario
The sample scenario shows the sequence of steps which take place in subscription. Refer to the Inquiry
API sample for some keys defined here.

1) Setting up the Notification web service.
This is done by registering a binding template. To do this we need to register first the business entity and
a business service for that entity and then the binding template for that business service. This can be
done either using programming API or using some kind of UI which supports the publication API’s as
specified in the UDDI specification (section 5.2). The important thing is that we need the binding key
when we create the subscription in the next step. Usually the keys are generated by the underlying
software which implements the UDDI specification.

The following is a typical bindingTemplate for a Web Service that implements the UDDI
Version 3 Subscription Listener API. This Web service is registered by a subscriber of
asynchronous updates to UDDI entities:

<save_binding xmlns="urn:uddi-org:api_v3">
 <bindingTemplates>
 <bindingTemplate serviceKey="uddi:nhiedomain.com:681dba36-b47c-
454d-808b-042978f6d7ce" bindingKey="uddi:nhiedomain.com:2a45f809-b313-4b47-
a215-665c40533149">
 <description>UDDI Subscription Listener API V3</description>
 <accessPoint
URLType="http">http://localhost:18181/subscriptionListener</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
tModelKey="uddi:uddi.org:v3_subscriptionlistener" />
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </save_binding>

2) Create subscription to get service details.
Again this can be done either using programming API or using some kind of UI which supports the
subscription API’s as described above.

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 31 of 39

<save_subscription xmlns="urn:uddi-org:sub_v3">
<subscriptions>
<subscription brief="true" xmlns="urn:uddi-org:sub_v3">
 <subscriptionKey>uddi:4f0d7450-a578-11d8-91cd-
5c1d367091cd</subscriptionKey>
 <subscriptionFilter>
 <serviceDetail xmlns="urn:uddi-org:api_v3">
 <servicekey> uddi:nhiedomain.com:a4dc6e0f-f3a6-4dee-a6ac-
c274e4cc6d87</servicekey>
 </subscriptionFilter>
 <maxEntities>10</maxEntities>
 <expiresAfter></expiresAfter>
</subscription>
</subscriptions>
</save_subscription>

3) Get notification for subscriptions
This API is invoked by the UDDI node which implements the UDDI specification.
The sample below shows when the “brief” is set to true.

<notify_subscriptionListener>
<subscriptionResultsList xmlns="urn:uddi-org:sub_v3">
 <chunkToken>0</chunkToken>
 <coveragePeriod>
 < startPoint>2008-09-01T00:00:00.000</startPoint>
 < endPoint>2008-10-01T00:00:00.000</endPoint>
 </coveragePeriod>
 < subscription brief="true">
 < subscriptionFilter>
 <categoryBag>
 <keyedReference

tModelKey="uddi:nhin:uniformservicename"
keyValue="AuditLogService"/>

 <keyedReference
tModelKey="uddi:nhin:versionofservice"
keyValue="1.0"/>

 </categoryBag>
 </subscriptionFilter>
 </ maxEntities>
 </expiresAfter>
 </subscription>
 <keyBag>
<deleted>false</deleted>
<serviceKey> uddi:nhiedomain.com:93afd501-12d5-4023-b733-f3036a10a546
</serviceKey>
</keyBag>
</subscriptionResultsList>
</notify_subscriptionListener>

4) Get changed subscriptions

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 32 of 39

This API is called by the client to the UDDI node. The response to this request is very much similar the
sample described above (3) except that it is without the “notify_subscriptionListener” tags.The request
is generally made using the programming API and is a part of the client side API.

<get_subscriptionResults>
<subscriptionKey> uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
</subscriptionKey>
<coveragePeriod>
 < startPoint>2008-09-01T00:00:00.000</startPoint>
 < endPoint>2008-10-01T00:00:00.000</endPoint>
 </coveragePeriod>
</get_subscriptionResults>

5) Delete subscription
Again this can be done either using programming API or using some kind of UI which supports the
subscription API’s as described above.

<delete_subscription>
 <subscriptionKey>uddi:4f0d7450-a578-11d8-91cd-
5c1d367091cd</subscriptionKey>
</delete_subscription>

Some more examples are found at C.2.2 section of the UDDI v3 specification.

6.4 NHIE Service Registry Security Model:
The basis of authentication and non-repudiation for all NHIE Service Registry participants shall be X.509
digital certificates, which are commonly deployed in conjunction with a Public Key Infrastructure (PKI) and
are also associated with Transport Layer Security (TLS). (The use of TLS in the NHIN is further described
in the Messaging Platform Specification). A combination of the above technologies within the NHIN works
to ensure that only reliably authenticated NHIE participants can communicate within the NHIN, and to
maintain data confidentiality and integrity while data is in transit.

For the December 2008 Trial Implementation demonstrations, a single Certificate Authority (Trial CA) will
be utilized for the purpose of issuing the necessary X.509 certificates to all NHIEs, which shall be used to
authenticate communication with the Service Registry. This Trial CA will therefore serve as the “trust root”
or “trust anchor” of a limited PKI during the authentication process described below as well as digital
signature verification.

In order to reduce the complexity of this demonstration, traditional PKI functionality such as chaining of
certificate authorities, bridges, revocation list processes and registration authorities will not be
implemented. However, for scalability and security reasons, true PKI functionality will clearly need to be
implemented after the Trial Implementation period. So, for 2009 and beyond, a master NHIN Certificate
Authority and PKI infrastructure as well as an identity proofing and credentialing provider should be
deployed and maintained by the future NHIN governance body.

Basis of Trust and Access Control:
Given that the common Trial CA issues and signs all Trial Implementation X.509 certificates, these
certificates will serve as the basis of trust and authentication between NHIEs and shall be used to control
access to the service registry. All NHIE to Service Registry communication must be authenticated and
digitally signed via these certificates to ensure only authorized and properly authenticated NHIEs are
allowed to communicate with the Service Registry. Access to the discrete NHIE registry entries (WSDL

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 33 of 39

endpoints and other sensitive information) shall be restricted to other accredited NHIEs who themselves
posses valid Trial Implementation X.509 certificates. The public key of the NHIE X.509 certificate will also
be included in the registry if technically feasible.

By leveraging even limited PKI and CA functionality for the Trial Implementation, NHIE participants can
engage in secure transactions and will have reasonable assurance that:

1. Both the sender and recipient of NHIN data will be identified uniquely so the parties know where
the information is flowing from and to (providing identification and authentication);

2. Data transmissions were not altered deliberately or inadvertently (establishing data integrity);
3. Both sender and recipient identity is inextricably tied to the data transmitted (technical non-

repudiation);
4. NHIN data is protected from unauthorized access (guaranteeing confidentiality or privacy).

Client and Server Authentication:
When X.509 certificates are utilized to provide mutual client and server authentication, the Trial PKI
infrastructure described above and TLS functionality outlined in the Messaging Platform are combined to
ensure strong authentication of the communicating parties. For example, when an NHIE client needs to
be authenticated to a particular server (or service), a valid certification path to a trust root, (in this case,
the Trial CA), is required in order for the X.509 certificate presented to the server or client to be trusted
and authentication performed.

As detailed in NIST SP800-52, clients play an important role in the overall security posture of this
implementation, especially with regards to authentication. The protocol version and cipher suite (see
Messaging Platform Specification for required TI standards) are negotiated by the client with the server,
and are presented in the “ClientHello” message to the server. This message forms the foundation for the
server’s negotiation of the strongest possible security in the communication, and is the first message to
be sent as the client establishes a TLS connection to the server. In this way, the client can remain
connected, re-establish a preexisting connection or establish additional secure sessions with the server
without having to repeat the entire handshake process.

The handshake process also accomplishes client authentication in the following manner. The server
requests the client’s X.509 certificate and negotiates the necessary communication parameters. The
client responds with its certificate combined with a signed hash of the initial handshake to establish proof
of possession to the server of the corresponding key. However, in the event that the client does not have
a valid X.509 certificate, (i.e. one not issued by the Trial CA), the server shall terminate the connection
and issue a “handshake failure” alert, as trust cannot be established between the client and the server.

Servers shall also use their Trial CA issued X.509 certificate and corresponding key to authenticate
themselves to NHIE clients. Server authentication is performed via the TLS protocol and therefore
provides assurance to the client that the server has been authorized to communicate within the NHIN
(since the server’s network address matches the address detailed in the valid Trial CA issued certificate),
that the server is in control of the corresponding public and private keys, and is therefore in actuality the
server it claims to be. Server authentication follows a handshake process similar to that of client
authentication with some minor differences. The server generates a session id that is sent to the client in
a “ServerHello” message. (This server-generated session id and related key and cipher suite material is
stored for later use to resume sessions with the client).

In summary, by requiring the NHIN clients and servers to mutually authenticate one another, (i.e. both
server and client authentication are performed) all data is protected via TLS and is also tied to the keys
established during the authentication process. As a result, the overall security of all NHIN service registry
communication is reasonably assured since public key technology and X.509 digital certificates (which
bind the identity of a the client or server to its public key) are used to assure strong authentication,
reliable encryption, nonrepudiation, and data integrity.

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 34 of 39

References:
RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile
http://www.ietf.org/rfc/rfc2459.txt
WS-I Security Profile 1.1, X.509 Token Profile 1.0
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
Minimum Interoperability Specification for PKI Components
http://csrc.nist.gov/publications/nistpubs/800-15/SP800-15.PDF
Federal Agency Use of Public Key Technology for Digital Signatures and Authentication
http://csrc.nist.gov/publications/nistpubs/800-25/sp800-25.pdf
Introduction to Public Key Technology and the Federal PKI Infrastructure
http://csrc.nist.gov/publications/nistpubs/800-32/sp800-32.pdf
Guidelines for the Selection and Use of Transport Layer Security (TLS) Implementations
http://csrc.nist.gov/publications/nistpubs/800-52/SP800-52.pdf
The X.509 certificate standard [ISO94-8]
http://www.ietf.org/html.charters/pkix-charter.html

6.5 UDDI Replication

This part of the specification describes the inter node replication between two or more nodes of the NHIN
UDDI service registry. The replication is a server to server communication with no client calls.

6.5.1 Replication Concepts
The goal of replication is to facilitate the establishment and maintenance of a single consistent shared set
of registry data. Per the UDDI specification, there are two possible options to configure replication:

a) Push like model – In this model there is a replication communication graph node at each node
which has information of all of its neighbors. When that node receives a change it notifies its
neighbors about the change using the “notify_ChangeRecordsAvailable”. Then the receiving
nodes who want to get the changes will call the API “get_ChangeRecords” to get the records.
This is new to UDDI v3.

b) Pull like model – In this model works on the principle of Master and Slave nodes. All updates are
made to the Master node and the slave nodes get updated via replication. The slave node, on
regular intervals, invokes call to the Master node and acquires the changed data.

For NHIN service registry, based on the requirements, the Pull model would be implemented. For the
demo purposes, the federal agencies would host the master node and a slave node while CareSpark
would implement another slave node. The NHIN governance body would facilitate the registration of
businesses to the NHIN service registry. The governance body would maintain the Master node and
assist with setup of replication and Slave nodes.The assumptions is that the HIE’s will be sending the
updates to the governance body to update the master node. The governance body will be maintaining the
master node and the slave node.

The WSDL which defines the replication API are in “uddi_repl_v3_portType.wsdl”. The binding for this
WSDL is defined in “uddi_repl_v3_binding.wsdl”. These WSDL’s and related schemas are in the zip file
embedded in this document. They are in Appendix B of this specification.

http://www.ietf.org/rfc/rfc2459.txt�
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html�
http://csrc.nist.gov/publications/nistpubs/800-15/SP800-15.PDF�
http://csrc.nist.gov/publications/nistpubs/800-25/sp800-25.pdf�
http://csrc.nist.gov/publications/nistpubs/800-32/sp800-32.pdf�
http://csrc.nist.gov/publications/nistpubs/800-52/SP800-52.pdf�
http://www.ietf.org/html.charters/pkix-charter.html�

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 35 of 39

6.5.1.1 Replication Process

Following are the steps which occur during replication process:

• Step 1 – The slave node does a “do_ping” to the master nodes to see if it is available.
• Step 2- If the master node is available then it makes a call to the master node with the
• “get_ChangeRecords” API call.
• Step 3 - Then the master node will send the changed records, which includes USN of the

master node, entity unique key, payload of entity data (e.g. businessEntity, businessServices,
tModel, bindingTemplates and businessRelationships).

USN – This is called updated sequence number. This is a strictly increasing sequence number maintain
by registries at each node. An originating USN is assigned to a change record at its creation. No change
record may have a USN equal to 0.UDDI nodes must not rely on an originating sequence increasing
monotonically by a value of “1”.

The node which is updating the change records should maintain a “Change record Journal” as a part of
their internal implementation. This journal maintains the before and after state of the changed records at
the receiving node. It is recommended to have a change record Journal based on the implementation
selected.

The UDDI implementation should be able to add node and remove node using replication. Refer to
sections 7.8 and 7.9 of the UDDI specification.

6.5.1.2 UDDI Replication Configuration
In case of NHIE the replication of UDDI data within a registry should be governed by information
maintained within a Replication Configuration Structure. The structure includes sufficient information to
uniquely identify each node within the UDDI registry. Each current UDDI node within the Registry is
identified with an operator element in the replicationConfiguration

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 36 of 39

More detail on Replication Configuration Structure is described at 7.5.1 and 7.5.2 sections of the
specification.

Replication communicationGraph is used to administer and control the replication configuration structure.
The replication configuration should be stored in a format easily accessible for administration. This may
be a in a file, for example.

More detail on the Replication communicationGraph is described at 7.5.3 section of the UDDI
specification.

Replication configuration consists of two parts:

1) Master Node configuration – This involves creation of two subscriptions; one with filter as
find_business and the other with filter as find_tModel. These subscriptions are set for receiving
changed subscriptions as KeyBag.

Refer to the section 5.5 of the UDDI specification for more details on how to create subscription.

2) Slave Node configurations –This involves registration of subscriptions created in step 1). The

Master node governance body would distribute the subscription keys (generated in step 1) to the
Slave node administrators. The parameters used to configure this node are

i. Period = 60
1. Period is how often the master is polled for changes, in seconds.

ii. Name = find tModels
iii. Username = valid username on master server node
iv. Password = valid password for user above
v. subscriptionKey = subscription key for tModel or business subscription that was

created in step 1 above.
vi. inquiryURL = URL for inquiry service on master server node
vii. subscriptionURL = URL for subscription service on master server node

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 37 of 39

viii. securityURL = URL for security service on master server node
ix. disabled = false

6.5.1.3 Security configuration
The communication in between the nodes for replication will use SSL as transport security and public
keys as defined in the security section of this specification. SSL 3.0 with mutual authentication is
represented by the tModel uddiorg:mutualAuthenticatedSSL3 as described within Section 11.3.2
Secure Sockets Layer Version 3 with Mutual Authentication. More details on the security are described on
section 5.4 of this specification.

6.5.1.4 UDDI Replication API
UDDI Replication defines four APIs. From a NHIN perspective we will be using only the 2 API’s
mentioned below.

• get_changeRecords - This message is used to initiate the replication of change
records from one node to another. The invoking node, wishing to receive new change
records, provides as part of the message a high water mark vector. This is used by
the replication source node to determine what change records satisfy the caller’s
request.

• do_ping - This UDDI API message provides the means by which the current
existence and replication readiness of a node may be obtained.

More information on the API is available in section 7.4 of the UDDI specification

FIG 1.Changed Record Structures – This is the structure which is returned back to the slave node.
Each of the change record contains the details of the changes which will be updated on the slave node.

Each change record contains a changeID that identifies the node on which the change
originated and the originating USN of the change within that node. It then contains one of several allowed
forms of change indication.

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 38 of 39

More details regarding the change indications are described in sections 7.3.1 to 7.3.10 in the UDDI
specification.

In UDDI node-to-node replication communication MUST be carried out by means of SOAP messages and
responses. The soapReplicationURL element of the operator element indicates where such messages
should be sent to communicate with a given node. Refer to section 7.5.2 for more detail on
soapReplicationURL. The replication API should use SOAP 1.1 to make replication calls.

6.5.2 tModel for UDDI replication
The tModel is defined in the section 11.2.4 of the UDDI specification. More examples are available in
Appendix J of the UDDI specification.

7 Other Standards

None.

8 Mapping to HITSP and IHE Technical Standards
HITSP and IHE have not addressed the subject of service registries.

9 Technical Pre-conditions

This specification assumes a centralized governing agency which, prior to any sharing of patient data,
validates an NHIE. The governing agency is expected to define a process whereby a NHIE can apply to
share data through the NHIN interfaces, the NHIE is verified as a qualified organization and the NHIE has
been given a certificate whose root includes a root from the governing agency. Thus certificates which
bear the certification from this governing agency prove that the providing organization has met the
standards required to sharing data on the NHIN. The standards enforced by the governing agency are
expected to include, but are not limited to:

• Ensuring the organization is a valid organization and its sole intention is in line with the purposes
of the NHIN

• Ensuring the organization has appropriate policies and governance agreements to protect the
data it is given

• Ensuring the organization is able to reliably and securely provide the minimum NHIN services

Only through this bootstrapping process provided by the governing agency can a NHIE have its
information saved in the Service Registry. Thus the users of the Service Registry can be assured that
organizations listed within it have satisfied the requirements and are generally safe to share data with.

In addition to verification of new NHIE’s, the governing agency will need to also provide a repository for
saving common WSDL’s and public key certificates. This is further addressed in section 10.1, below.

10 Technical Post-conditions

None

5 NHIN Trial Implementations NHIE Service Registry Service
Interface Specification v1.1

Security and Technology Working Group Page 39 of 39

11 Future Directions

11.1 Moving from a registry to a repository

The use of UDDI is a component of compliance with the WS-I Basic Profile Version 1.1, which has been
adopted by the NHIN as an underlying profile for the NHIN Messaging Platform specification. More
specifically, the OASIS WS-I WS-BasicProfile V 1.1 Final (http://www.ws-i.org/Profiles/BasicProfile-
1.1.html) states:

• In Section 2.4 (Claiming Conformance) UDDI seems to be required, although the standard falls
short of actually stating UDDI is a requirement.

• Section 4.1 (Required Description) requires either a WSDL 1.1 description or a UDDI binding
template for end points.

• Section 5.0 (Service Publication and Discovery) states:
“When publication or discovery of Web services is required, UDDI is the mechanism the Profile
has adopted to describe Web service providers and the Web services they provide. ...
Registration of Web service instances in UDDI registries is optional. By no means do all usage
scenarios require the kind of metadata and discovery UDDI provides, but where such capability is
needed, UDDI is the sanctioned mechanism.”

• The NHIN Implementation Work Group also attempted to anticipate the future direction of WS-
BasicProfile by reviewing the WS-BasicProfile Draft 2.0. Analysis of this draft standard reveals
the same UDDI references in 2.0 as in 1.1. This cannot be considered proof that WS-BasicProfile
2.0 will support UDDI, but does seem to indicate that direction is a likely outcome.

• No other registry specifications are mentioned by name in the WS-BasicProfile documents 1.1
Final or 2.0 Draft other than UDDI.

However, there are some inherent limitations in the use of UDDI for the NHIN services registry
component. Because UDDI is a registry rather than a repository, its primary purpose is to maintain
pointers to artifacts, not copies of the artifacts themselves. This limits the ability of the service registry to
store and thus govern the artifacts, which is a desirable goal.

An example of this limit in practice occurs with respect to WSDL files, and X.509 certificates. It may be
desirable to store both in the services registry but there is no currently known mechanism for
accomplishing such. As a result, UDDI can only store a link to these artifacts (in the form of a Uniform
Resource Identifier (URI)). Beyond governance, support for ontologies, object relationship
representations, role-based access control, federated identity management and extensible metadata may
all be desirable. Alternatives such as ebRS or other technologies may be worth considering beyond the
2008 NHIN Trial Implementations period if they can achieve broad industry support and integration with
the WS-I Basic Profile.

11.2 10.2 Entity directory services
It may be desirable in the future to create directories of entities (such providers, labs, pharmacies, etc.)
that participate within a given NHIE. For example, a patient may have knowledge of the provider who
holds their records but not the details of which NHIE that provider participates in. A mapping from
provider to NHIE would be useful for finding the records for this patient. At this time this use case is
declared out of scope as it requires some detailed discussion regarding its appropriateness, security and
privacy of providers and what the best approach to implementation might be.

	Preface
	Introduction
	Intended Audience
	Focus of this Specification

	NHIE Interface
	Interface Between
	NHIE Core Services and use cases supported
	Get all NHIE data
	Get data about NHIE’s by state
	Getting data by homeCommunityId
	Service Registry backup

	NHIE context for use
	Description of Interface
	Registry Data Model (UDDI tModel)
	NHIN Taxonomies
	Sample NHIN Service Registry Entry
	WSDL to UDDI Mapping (currently out of scope)

	Inquiry API (Client discovery API)
	Details
	Sample – Using Inquiry APIs for NHIN Service Registry search

	Subscription API
	Steps for subscription and notification configuration with a sample scenario

	NHIE Service Registry Security Model:
	UDDI Replication
	Replication Concepts
	Replication Process
	UDDI Replication Configuration
	Security configuration
	UDDI Replication API

	tModel for UDDI replication

	Other Standards
	Mapping to HITSP and IHE Technical Standards
	Technical Pre-conditions
	Technical Post-conditions
	Future Directions
	Moving from a registry to a repository
	10.2 Entity directory services

