Identity Management: Use Cases

In support of Value-based Payment and Delivery System improvement

David C. Kendrick, MD, MPH
Agenda

• Introductions
• Framework for discussion
• Discussion of Use Cases for Identity Management
• Process for prioritizing and choosing use cases
• Implications of Use Cases for subsequent decisions
 • Governance
 • Architecture
 • Sustainability
Key Elements of the Health IT Stack for Value-based payment models and the Learning Health System
Identity Management: Decisions to Make

• Use Cases:
 • What are the 1, 3, 5 year use cases for the identity system?

• Architecture
 • Where does the technology live?
 • Federated vs. Centralized (many eMPI’s vs. single eMPI)

• Governance
 • Who is in charge? Who makes the call on the rules and match quality?

• Sustainability
 • What are the costs to purchase, staff, maintain?
 • Are there revenue opportunities? How to share the cost?
Relationships among decisions

Use Cases

Governance

Architecture

Sustainability
Use Cases

• Identify through a multi-stakeholder process
• Usually derived from SIM planning process
• Most commonly include:
 • Support Multi-payer Value-Based payment models
 • eCQM’s
 • Clinical & Claims data aggregation
 • Support one or more State government processes
• Often include:
 • Enable providers to be successful in VBPM’s
 • Clinical (and claims) data available at the point of care
 • Care gaps and health analytics on populations and at point of care
 • Proactive notifications about admissions, d/c’s, transfers, etc.
States like mine . . . Which are you?

1. Single state-wide Shared Services Stack
 - Single eMPI for identity management
 - One multi-organizational data-use policy

2. Multiple sub-state HIE’s
 2a. Geographically distinct
 2b. Substantially overlapping markets

3. No Shared Services
 - One or more Health System HIE’s
 - No multi-organizational trust agreements
Implications of Architecture for eMPI

• **Pros:** Single eMPI to manage
 • Cost and labor efficiencies
 • More accurate patient matching
 • Feedback loops can reduces errors among input organizations
 • Sustainability options: Identity Service for all stakeholders
 • Reduces cost and errors among stakeholders

• **Cons:**
 • More politically challenging- requires a multi-stakeholder governance
 • Requires technical expertise at community level rather than just health system or payer level
 • Many sources of Demographics data, very little standardized
 • Potential security risks to centralized data (assuming a non-centralized clinical system)
Implications of Architecture for eMPI

Pros: Multiple eMPI’s across multiple organizations
- Politically expedient
- Distributes security targets around the community
- Feedback loops can reduce errors among input organizations

Cons:
- Redundant skill sets and identity remediations required across entities
- Does not support goal of accurate identity across state
 - eCQMs inaccurate due to multi-counting same individuals
- Difficult to satisfy state-wide needs
Implications of Architecture for eMPI

- **Pros:** No eMPI solutions across organizations
 - Least resistance (consistent with status quo)
 - No politics over the solution
 - No business changes
 - No new security risks (maximally distributed targets)
 - No new costs

- **Cons:**
 - Does not support goal of accurate identity across state
 - eCQMs inaccurate due to methodologic problems- every individual doctor must report scores from their own individual EHRs
 - No consideration to satisfy state-wide need
 - No opportunity for feedback loops or error connection
 - Missed opportunities to match patient records correctly
 - Individual care suffers with ineffective matching
 - Does not support goal of accurate identity across region