
An Introduction to
User-Managed Access (UMA)

FORGEROCK.COM

Eve Maler
VP Innovation & Emerging Technology
eve.maler@forgerock.com
 @xmlgrrl

October 22, 2014

2

Challenges in apps that handle
personal data and content

3

Some apps are still in the
Web 1.0 dark ages
■  Provisioning

user data by
hand

■  Provisioning it
by value

■  Oversharing
■  Lying!

4

Some other apps are still in
the Web 2.0 dark ages

■  The “password
anti-pattern” – a
third party
impersonates the
user

■  It’s a shared
secret honeypot

■  It’s a gray-market
B2B partner

5

Apps using OAuth and OpenID
Connect hint at a better, if not
perfect, way

6

Apps using OAuth and OpenID
Connect hint at a better, if not
perfect, way

7

What about selective
person-to-person sharing?

8

Our choices: send a private
URL…
■  Handy but

insecure
■  Unsuitable for

really sensitive
data

9

Or implement
a proprietary
access
management
system…

10

Or require impersonation

11

Killing – or even wounding – the
password kills impersonation

12

We have tough requirements
for delegated authorization
■  Lightweight for developers

■  Robustly secure

■  Privacy-enhancing

■  Internet-scalable

■  Multi-party

■  Enables end-user convenience

13

Introducing UMA

14

UMA in a nutshell
■  It’s a draft standard for “authorization V.next”
■  It’s a profile and application of OAuth V2.0
■  It’s a set of authorization, privacy, and consent APIs

■  It’s a Work Group of the Kantara Initiative
■  It’s not an “XACML killer”

■  Founder, chair, and “chief UMAnitarian”:
■  It’s heading to V1.0 in Q1 2015

15

OpenID
Connect UMA

OAuth 2.0

The new Venn of access control

16

The UMA protocol enables key
new use-case options

I want to share this stuff
selectively	

•  Among my own apps	

•  With family and friends	

•  With organizations	

I want to protect this stuff
from being seen by everyone
in the world	

I want to control access
proactively, not just feel forced
to consent at run time	

17

UMA is about interoperable,
RESTful authorization-as-a-service

18

UMA is about interoperable,
RESTful authorization-as-a-service

Has standardized APIs
for privacy and
“selective sharing”

Outsources protection to
a centralizable
authorization/
consent server

19

UMA is about interoperable,
RESTful authorization-as-a-service

Has standardized APIs
for privacy and
“selective sharing”

Outsources protection to
a centralizable
authorization/
consent server

“authz
relying
party”

(AzRP)

SSO
relying
party
(RP)

20

UMA is about interoperable,
RESTful authorization-as-a-service

Has standardized APIs
for privacy and
“selective sharing”

Outsources protection to
a centralizable
authorization/
consent server

“authz
provider”

(AzP)

“authz
relying
party”

(AzRP)

identity
provider

(IdP)

SSO
relying
party
(RP)

21

Use-case scenario domains
Health

Financial

Education

Personal

Government

Media

Behavioral

22

Use-case scenario domains
Health

Financial

Education

Personal

Government

Media

Behavioral

Web

Mobile

API

IoT

23

UMA-enabled systems can
respect policies such as…

Only let my tax preparer with email
TP1234@gmail.com and using client
app TaxThis access my bank account
data if they have authenticated
strongly, and not after tax season is
over.

Let my health aggregation app, my
doctor’s office client app, and the
client for my husband’s employer’s
insurance plan (which covers me)
get access to my wifi-enabled scale
API and my fitness wearable API to
read the results they generate.

When a person driving a vehicle with an
unknown ID comes into contact with
my Solar Freakin’ Driveway, alert me
and require my access approval.

24

The user
experience
can simulate
OAuth or
proprietary
sharing
paradigms, or
even be
invisible (“better
than OAuth”)

25

Under the hood, it’s “OAuth++”

Loosely coupled to enable
an AS to onboard multiple
RS’s, residing in any security
domains

This concept is new, to enable
person-to-person sharing
driven by RO policy vs. run-
time consent

26

underlies
access

federation
trust

frameworks

The UMA consent model supports
robustly partitioned rights and
obligations

Authorizing
Party

Resource
Server

Operator

Authorization
Server
Operator

Requesting
Party

27

identity
federation

trust
frameworks

underlies
access

federation
trust

frameworks

The UMA consent model supports
robustly partitioned rights and
obligations

Authorizing
Party

Resource
Server

Operator

Authorization
Server
Operator

Requesting
Party

Thank you!

FORGEROCK.COM

Eve Maler
VP Innovation & Emerging Technology
eve.maler@forgerock.com
 @xmlgrrl

29

Appendix:
The gory UMA details

30

The RS
exposes
whatever
value-add API
it wants,
protected by
an AS

The RPT is the main
“access token” and (by
default – it’s profilable) is
associated with time-
limited, scoped
permissions

App-specific API

U
M

A
-enabled

client

RPT

requesting party
token

31

The AS
exposes an
UMA-
standardized
protection
API to the RS

The PAT protects the
API and binds the RO,
RS, and AS

P
rotection A

P
I P

ro
te

ct
io

n
cl

ie
nt

PAT

protection API token

•  Resource registration endpoint
•  Permission registration endpoint
•  Token introspection endpoint

32

The AS
exposes an
UMA-
standardized
authorization
API to the
client

The AAT protects the API
and binds the RqP, client,
and AS

The client may be told:
“need_claims”

Authorization API

Authorization client

AAT
authorization API token

•  Authorization request endpoint

33

The AS can collect requesting
party claims to assess policy

A “claims-aware” client can
proactively push an OpenID
Connect ID token, a SAML
assertion, a SCIM record, or
other available user data to the
AS per the access federation’s
trust framework

A “claims-unaware” client can, at
minimum, redirect the
requesting party to the AS to log
in, press an “I Agree” button, fill
in a form, follow a NASCAR for
federated login, etc.

