

Health IT Policy Committee

Outbreak Management and Response Health IT in the United States: Introduction, Context and Terminology

John W. Loonsk MD FACMI CMIO CGI Federal Adjunct Associate Professor Center for Population Health IT Johns Hopkins Bloomberg School of Public Health

Outbreak Management and Response Health IT in the United States

- Ebola has brought to the fore important considerations for health IT
- Much of the attention in the U.S. emanated from the initial suggestion that an EHR was involved in clinical response challenges
- Dire circumstances internationally and other previous U.S. emergency events help show the importance of broader health IT readiness here
- Today we will focus on outbreak management and response health IT needs in the U.S. – they are a subset of broader public health and emergency management health IT needs

- We will hear functions that EHRs need to fulfill, functions that other public health IT systems must support, and some of the interoperability needed among them
- State and local health departments have primary responsibility for managing outbreaks in U.S. unless they are **cross-jurisdictional** or there is a declared **public health emergency**
- A challenge for health IT is the variability in the organization of health care and in different health departments nationally
- There can also be variability between **infectious disease**, **environmental**, and natural disaster emergencies

- Public and population health functions share many IT needs whether they are outbreak management, hospital infection control, chronic disease management, specialty registries, clinical research, or other activities that have a population perspective
- Importantly, population health IT and aggregate data systems are not synonymous - much of what you will hear is about public health functions that manage individual cases / patients
- Aggregate data also play an important role for reporting and situational awareness, particularly as data get rolled-up
- Even for infectious diseases, there are other sources of variability in public health emergencies as well

Some Other Elements of Variability

Method of Spread

Pathogen

Ebola, MERS, SARS, Anthrax, Mumps, Pertussis... Bodily fluids, airborne, airborne droplets, environmental spores

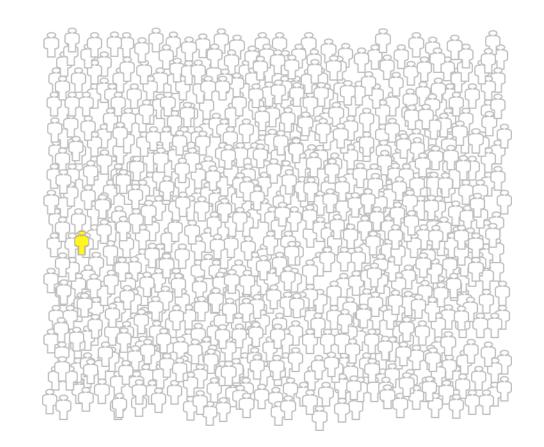
Infectiousness

Average number of secondary cases from a primary one

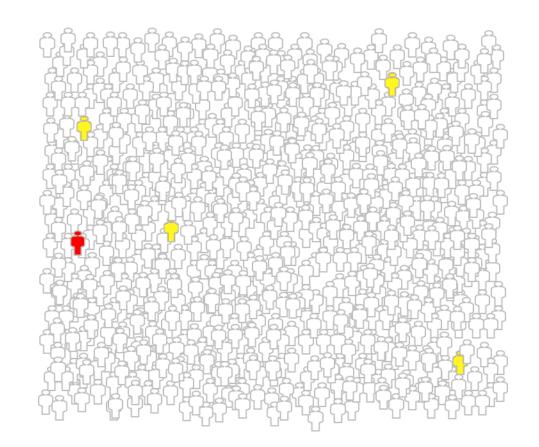
Host Resistance

Natural and induced

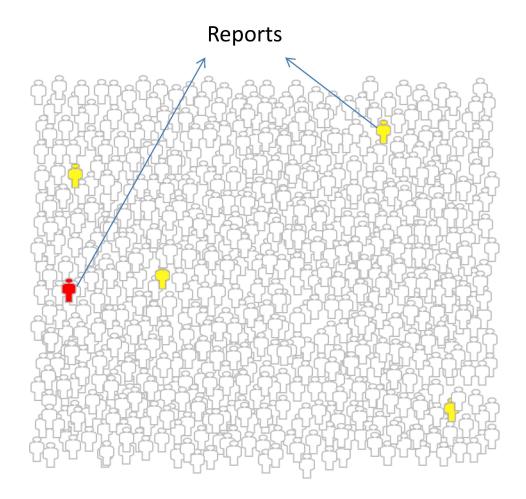
Duration of Contagiousness


Length of presymptomatic, symptomatic, and postsymptomatic risk

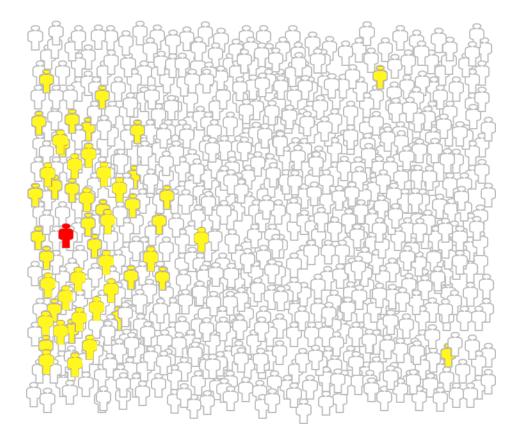
Size of Initial Exposure Natural and created



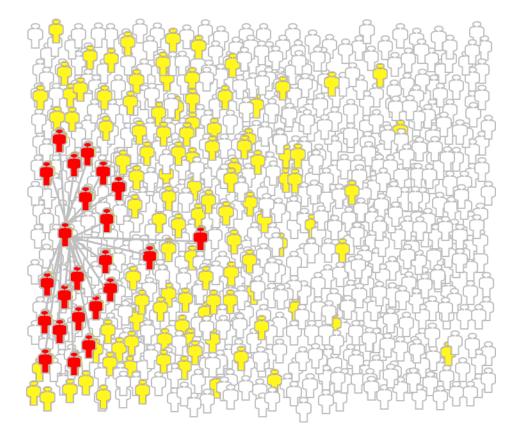
Outbreak Management HIT


- 1. Index case identification
 - Limited awareness
 - Conceptually one place
 "syndromic surveillance"
 might help, but few
 outbreaks identified this way
 - Providers are still the best
 "detectors," but they need
 information support and are
 not primarily "reporters"

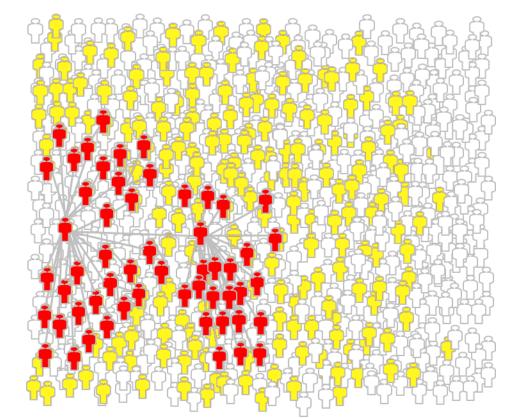
- 2. Screening for additional cases
 - Heightened awareness after index case brings different provider information support needs
 - Getting possible cases to people who are focused on looking for and managing outbreaks is a critical need – they have particular population focus and tools

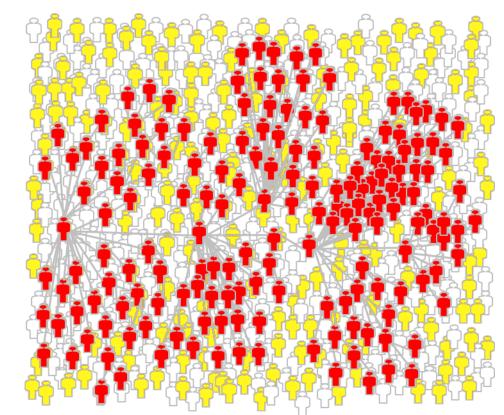


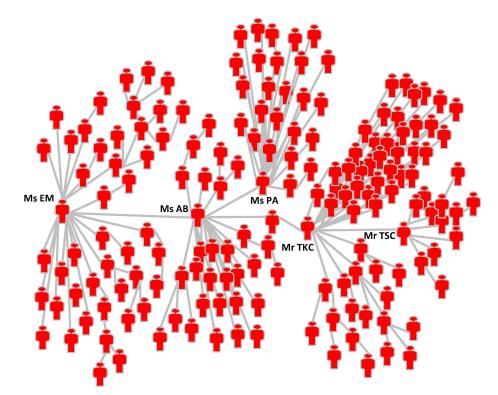
- 3. Reporting for monitoring and case management
 - Focus moves outside of EHR
 - Automating the movement of cases to public health systems has demonstrated significantly greater **yield** of cases
 - Also need link-back for clinical investigation of the outbreak population and for information sharing with providers



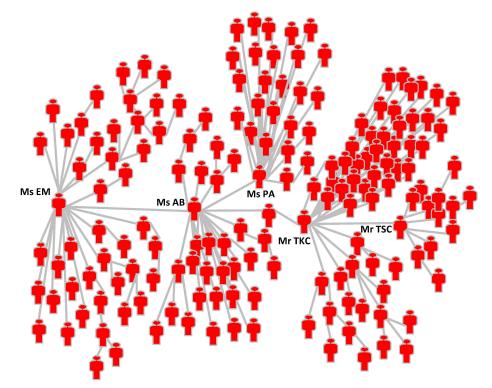
4. Case management


- Public health receives possible and confirmed cases and works these populations
- Cases confirmed with lab results and / or investigation
- Contact tracing to manage, link, and work what can be a rapidly increasing number of possible cases

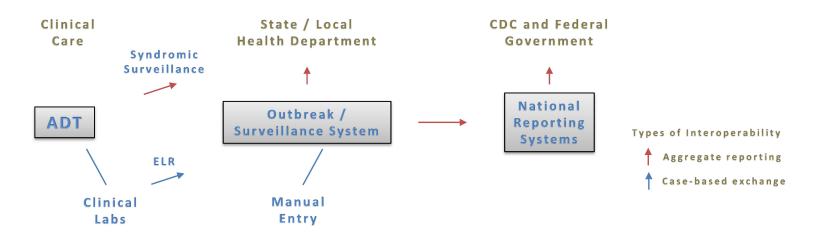

- Public health receives possible and confirmed cases and works these populations
- Cases confirmed with lab results and / or investigation
- Contact tracing to manage, link, and work what can be a rapidly increasing number of possible cases


- Public health receives possible and confirmed cases and works these populations
- Cases confirmed with lab results and / or investigation
- Contact tracing to manage, link, and work what can be a rapidly increasing number of possible cases

- Public health receives possible and confirmed cases and works these populations
- Cases confirmed with lab
 results and / or investigation
- Contact tracing to manage, link, and work what can be a rapidly increasing number of possible cases

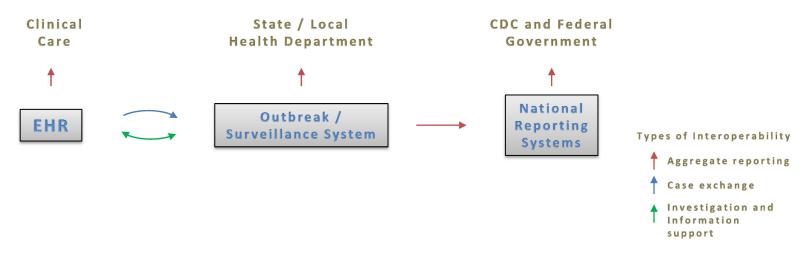


- From a World Health
 Organization report diagram
 detailing SARS transmission
 in Singapore
- No diagnostic lab test, no vaccine, no medication
- Health IT case management is a critical

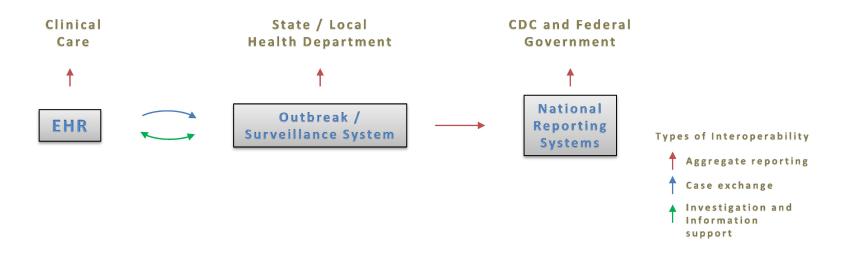


From SARS transmission in Singapore World Health Organization Regional Office for the Western Pacific 2005

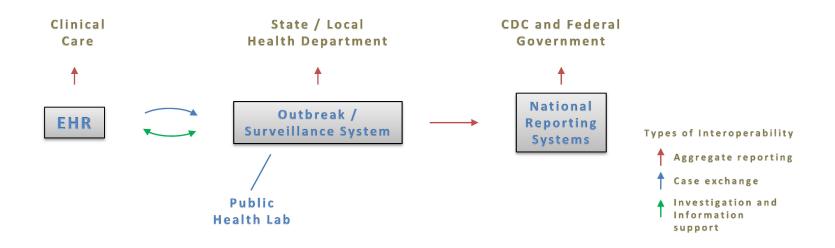
- 5. **Case reporting** and visualization
 - Managing case counts is a significant coordination issue
- 6. **Countermeasure** delivery and tracking
 - Medication and vaccine (inside and outside of healthcare)
 - Quarantine management (phone video monitoring, elsewhere smart bracelets)
- 7. Research and long term follow-up
 - Tail of outbreak life cycle


From SARS transmission in Singapore World Health Organization Regional Office for the Western Pacific 2005

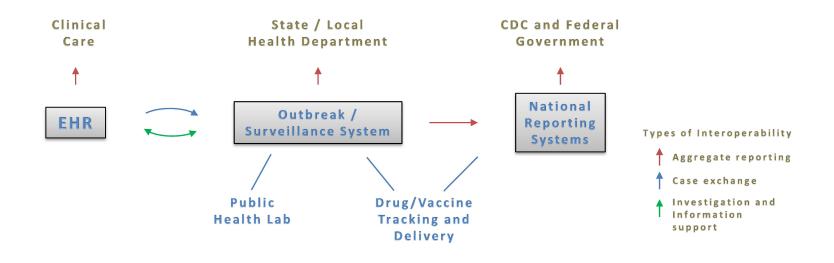
Before widespread EHR adoption:


- Even "electronic" case reporting is manual
 - Reporting yield can be very low at times
 - in extreme example CDC reports that one out of ten cases of Lyme disease, recorded in clinical care, are reported to health department despite state laws
 - Providers frequently do not know when, how, or where to report
- Electronic Laboratory Reporting (ELR) is at times a case reporting surrogate
 - Automated delivery from lab systems leads to high yield
 - Data are limited to what is available in the lab order and the test result
- **Syndromic Surveillance** takes advantage of available electronic data
 - Automated, immediate data from clinical care organizations
 - Started with Admission Discharge and Transfer (ADT) "chief complaints"
 - Not suitable for case management

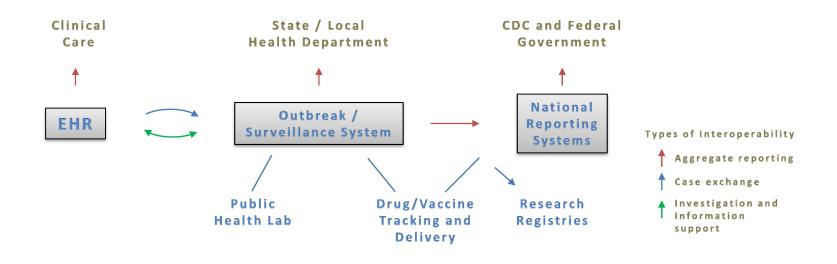
	Clinical Care		State / Heal Depart	th	Federal	
	EHRs			Non-EHR HIT Systems		
	1		1		<i>t</i>	
Outbreak Functions:		Exchange Functions:		Outbreak Functions:		
	Support for index case detection Screening for additional possible cases		Case-based data Aggregate data Guidance information Investigation	10. Situational awareness 11. Countermeasure delivery and tracking		
3.	Isolation				 Meds, vaccines, and more in commercial supply chain, health departments, and stockpile Quarantine management 	


Electronic Health Records

- Information to support index case and additional case identification is historically oriented to provider interpretation, not algorithmic implementation
- Guidance frequently changes during an event
- Case reports including clinical (epidemiologic) and lab data that exist need to be sent to surveillance / outbreak management systems
- Support for further investigation is also needed


Surveillance / Outbreak Management Systems

- Commercial, self developed, and CDC developed systems
- Implemented at state and local health departments and some mobile applications
- Surveillance, case management, contact tracing, investigation support, reporting to local and state health departments as well as CDC


Public Health Lab Information Management Systems

- Support testing that only public health labs do and when only public health labs will do it
- Rigorous preparedness protocol adherence
- Support surge capacity
- Must integrate with state health department, multiple federal agencies and clinical care

Countermeasure Tracking and Delivery Systems

- Track and manage countermeasures in state and local health departments, the national stockpile, and the commercial supply chain
- Push for use of new vaccines can have additional "take" and adverse events surveillance needs
- Important connections with immunization information systems, variety of systems / organizations that deliver vaccines

Research and Long Term Follow-Up Registries

- An important part of a learning health system
- With emerging infectious diseases, changing environmental pressures, antibiotic resistance and more, understanding how to deal with threats and best apply health IT for populations
- Insure that the safety net is in place that the public expects from their support