
 1 

Testimony to the ONC API Privacy and Security Task Force 
Virtual Hearing 
Eve Maler, ForgeRock 
January 26, 2016 
Thank you for the opportunity to address the panel on Consumer Technologies. 
Following are comments on the topic of APIs and their privacy and security aspects. 
My background: 

Eve Maler is VP of Innovation & Emerging Technology in ForgeRock's Office of the CTO. 
She is a renowned strategist, innovator, and communicator on digital identity, access, 
security, privacy, and consent, with particular focus on creating successful 
interoperable ecosystems and fostering individual empowerment. Eve drives 
innovation for the ForgeRock Identity Platform and directs ForgeRock’s involvement in 
related industry standards, particularly for federated authorization, privacy, and 
consent and their impact on the Web and the Internet of Things. To these ends, she 
founded and chairs the User-Managed Access (UMA) work group and co-founded and 
co-chairs the Health Relationship Trust (HEART) work group. 

Eve was formerly a principal analyst at Forrester Research, advising clients on 
emerging identity and security solutions, consumer-facing identity, distributed 
authorization, privacy enhancement, and API security. Previously Eve was an identity 
solutions architect with PayPal and earlier a technology director at Sun Microsystems, 
where she co-founded and made major contributions to the SAML federated identity 
standard. In a previous life she co-invented XML. 

APIs as a mechanism for fostering data accessibility 

Modern web-based APIs are in fact closer to the traditional definition of a 
communications protocol. They define a technical “contract” that lets disparate 
software entities (server and client respectively) communicate with each other, 
quite often having implemented their respective sides using different programming 
languages, to achieve a coordinated end, such as transferring data or outsourcing 
the execution of an algorithm. 

The ease with which partner ecosystems can be built to take advantage of this 
accessibility, along with mobile client apps’ need to call APIs in order to function, 
have led to a robust worldwide “API economy,” with many thousands of 
organizations becoming API providers and working in turn with at least an order of 
magnitude more client applications. The modern Internet of Things (IoT) era owes 
its existence largely to the API economy. 

In many corporations, money-making APIs have product managers and pricing 
plans rather than being owned by, say, an enterprise architect and being called by 
line-of-business client apps. 



 2 

An “open data” movement has also sprung up to make data sets, particularly 
government-managed ones, freely available through APIs. 

Access control as a counterpoint goal to data accessibility 

Some feel that API security and API accessibility are at odds. In my opinion, they 
need not be. 

Traditional IT security practices often give a false sense of security if they present a 
strong firewall and little resistance thereafter (the classic “crunchy shell and chewy 
center”). A defense-in-depth approach is more appropriate but often hard to 
achieve. However, publishing an API to the outside world requires acknowledging 
that the API’s endpoints (URLs) are indeed on the edge of the network and taking 
suitable steps. 

API management and security solutions, largely built on gateway architectures, have 
grown up to serve the “API economy” market, including security features to catch 
malicious types of access, rate-limiting to catch denial-of-service attacks even if the 
APIs are intended to be open to all, access control to ensure only correct users and 
applications get through, and other types of access-restricting functionality. 

It should be noted that access control is not just for the purpose of security. You 
can’t charge for an API if you can’t throttle access! 

Further, the very nature of an API, versus many other mechanisms for making data 
accessible – such as enabling FTP (quite often left unsecured) – is a model of 
constrained access, since the set of supported API calls is typically smaller than the 
full set of HTTP verbs, with the other calls producing errors. 

API design and potential impacts on privacy 

Data protection is not privacy, and problems are likely to arise that are out of the 
realm of the technical. 

The best-protected API may still have been designed to be destructive of privacy by 
virtue of the data its messages carry. For example, the data contained in response 
data sets could enable inappropriate correlation of individual identities by the 
receiving party. This could be a problem of API design or data model. 

If a legitimate client app must in the course of business be exposed to sensitive or 
regulated data but the API provider, or the data subject, desires to put other 
controls on the operator of that app, the challenge enters the business or legal 
realm. Or if data is transferred only between providers on a “back channel” without 
any say in the matter by a patient – the way much marketing data changes hands 
today – then any problems are not the fault of the technology, but rather the 
business model, and perhaps regulatory compliance. (This notion of parceling out 
problem spaces has become known as the “BLT sandwich,” for business-legal-
technical.) 



 3 

API challenges and potential solutions in data tagging 

APIs present some unique circumstances regarding data tagging to track 
provenance. 

When creating fairly static, non-volatile data, such as asking an individual to fill out 
a form or recording details of a visit to a healthcare provider, tagging the data 
creates no problem. But what if an API endpoint is able to report out a live feed of 
data coming from a device that has a sensor for blood oxygen levels? The most 
upstream point of provenance is the API, or the device. 

A solution would be to identify the points where the API or device is onboarded to 
its service ecosystem, formalize that onboarding ceremony, and apply security tags 
to elements of the metadata used in that ceremony. 

Industry-standard APIs 

Standardizing an API within an industry is a very valuable idea when 
interoperability – removal of business and technical friction – is needed for some 
sufficiently large subset of interactions among players. FHIR is one example of 
where industry movement has been kick-started through a standard API. The Open 
Bank API effort in the UK is another. 

APIs for standard security, identity, and consent mechanisms 

For any API, proprietary or standard, there are good reasons for it to use 
standardized mechanisms for security, identity, and consent to the extent possible. 
Some reasons: 

• Complexity and variation are enemies of security. Standardization simplifies. 
• It’s hard to separate data from different parts of a person’s life, such as 

“consumer,” “health,” “car,” “travel,” “school,” and so on. A standard way of 
identifying the person across those worlds could help bring the data together 
for their benefit. 

• A standard mechanism has likely been well vetted by others. 
• Standards can generally be implemented by multiple parties, and those 

implementations usually strive for interoperability with each other, so it may 
be more possible to “buy” vs. “build” at a favorable price. 

Since APIs are a good technology generally, it stands to reason that they are a good 
idea when it comes to designing standard mechanisms for security, identity, and 
privacy as well. This is where the innovative emerging technologies OAuth 2.0, 
OpenID Connect, and User-Managed Access (UMA) come into play; in part, their 
specifications include definitions of APIs, and they are extremely well suited for use 
with APIs. 

OAuth is an API of enabling a client app to call an API on behalf of a “resource 
owner” (typically an individual) and with their consent, without ever having seen 
their credentials (such as a username and password). An “access token” stands for 
the consent and for the list of actions (“scopes”) the client app can perform, which 



 4 

may not be the whole possible list. The resource owner can always go back to the 
API publisher and withdraw the consent, revoking the token. 

OAuth is innovative because it ensconces the individual as an intermediary in the 
API call flow, it protects their credentials, and it provides a means for consent 
notification. However, its consent mechanism is relatively “disempowered” because 
the individual is the last entity consulted in the flow and given little choice, and its 
consent withdrawal mechanism is relatively inconvenient. 

OpenID Connect is effectively a simple OAuth-protected API that does single sign-on 
and identity data retrieval jobs. Its main innovation is to use lightweight technology 
to remove friction from tasks that the older SAML standard proved too heavy to 
tackle in practice. 

UMA is innovative because it puts the individual resource owner, and the 
authorization service that executes their policies for access, at the center of the 
equation. It enables use cases from proactive delegation (“Share” by user choice) to 
reactive consent (access approval when asked) to any-time monitoring and 
adjustment of access (denial and withdrawal), all with a choice to adjust scopes of 
access at any time. Further, its architecture enables the resource owner to manage 
these choices in a central location (where “central” is relative to some identity 
ecosystem that the services used by the individual are willing and able to participate 
in). 

As a final note, the Health Relationship Trust (HEART) standards effort is key 
because it specifically focuses on patient-centric, privacy-sensitive health data 
sharing use cases, and it seeks to tighten both the security of the above three 
standards and their interoperability when applied to the FHIR API. 

Implications of UMA for the future of consent as data becomes more accessible 

The practice of privacy has, to date, largely and understandably been an exercise in 
data protection and risk mitigation. However, increasing pressure is coming from 
several directions: 

• Consumer skepticism and cynicism due to press revelations about 
surveillance, breaches, and bad corporate behavior 

• Increasing data volumes and sources due to consumer/health IoT trends 
• Worldwide regulatory pressure in new directions, particularly stressing 

human autonomy and consent 
• Businesses striving to demonstrate transparency to consumers in order to 

build trusted digital relationships with them 

The available tools for solving consent problems have been extremely limited to 
date. 

In the web-only era, consent tools consisted largely of “browse-wrap” (individuals 
were subject to terms of service by merely using a website), notice 
acknowledgements (such as those compliant with the EU Cookie Directive), and the 
familiar opt-in and opt-out checkboxes. The only truly interesting consent tool was 



 5 

the proprietary “Share” button found in Google Docs and similar applications, which 
acts a bit like online consent directives. 

In the API/mobile era, consent tools expanded to include “API-wrap” (client app 
developers were subject to terms of service appearing in developer documentation 
by merely calling an API) and OAuth as discussed above. 

Finally, now that we find ourselves in an API-inflected “IoT economy,” UMA offers a 
basis for consent tools that can robustly and strategically address consumer doubt, 
data volumes and sources, regulatory pressure, and businesses’ need to build 
trusted digital relationships with users. 

Thank you. 

/s/ 

 

Eve Maler – VP Innovation & Emerging Technology, ForgeRock 


	Testimony to the ONC API Privacy and Security Task Force Virtual Hearing Eve Maler, ForgeRock January 26, 2016 
	APIs as a mechanism for fostering data accessibility 
	Access control as a counterpoint goal to data accessibility 
	API design and potential impacts on privacy 
	API challenges and potential solutions in data tagging 
	Industry-standard APIs 
	APIs for standard security, identity, and consent mechanisms 
	Implications of UMA for the future of consent as data becomes more accessible 


